Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Main subject
Publication year range
1.
J Am Chem Soc ; 146(14): 9836-9850, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38545903

ABSTRACT

The electronic structure and geometrical organization of aqueous Cu2+ have been investigated by using X-ray photoelectron spectroscopy (XPS) at the Cu L-edge combined with state-of-the-art ab initio molecular dynamics and a quantum molecular approach designed to simulate the Cu 2p X-ray photoelectron spectrum. The calculations offer a comprehensive insight into the origin of the main peak and satellite features. It is illustrated how the energy drop of the Cu 3d levels (≈7 eV) following the creation of the Cu 2p core hole switches the nature of the highest singly occupied molecular orbitals (MOs) from the dominant metal to the dominant MO nature of water. It is particularly revealed how the repositioning of the Cu 3d levels induces the formation of new bonding (B) and antibonding (AB) orbitals, from which shakeup mechanisms toward the relaxed H-SOMO operate. As highlighted in this study, the appearance of the shoulder near the main peak corresponds to the characteristic signature of shakeup intraligand (1a1 → H-SOMO(1b1)) excitations in water, providing insights into the average dipole moment distribution (≈36°) of the first-shell water molecules surrounding the metal ion and its direct impact on the broadening of the satellite. It is also revealed that the main satellite at 8 eV from the main peak corresponds to (metal/1b2 → H-SOMO(1b1) of water) excitations due to a bonding/antibonding (B/AB) interaction of Cu 3d levels with the deepest valence O2p/H1s 1b2 orbitals of water. This finding underscores the sensitivity of XPS to the electronic structure and orientation of the nearest water molecules around the central ion.

2.
J Chem Phys ; 159(14)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37811825

ABSTRACT

The core valence separation (CVS) approximation is the most employed strategy to prevent the variational collapse of standard wave function optimization when attempting to compute electronic states bearing one or more electronic vacancies in core orbitals. Here, we explore the spurious consequences of this approximation on the properties of the computed core hole states. We especially focus on the less studied case of double core hole (DCH) states, whose spectroscopic interest has recently been rapidly growing. We show that the CVS error leads to a systematic underestimation of DCH energies, a property in stark contrast with the case of single core hole states. We highlight that the CVS error can then be interpreted as an over relaxation effect and design a new correction strategy adapted to these specificities.

3.
Phys Rev Lett ; 131(25): 253201, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181353

ABSTRACT

Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.

4.
Phys Chem Chem Phys ; 24(39): 24246-24263, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36169150

ABSTRACT

The vibrational envelopes of the first and second lines of the acetyl cyanide valence photoelectron spectrum [Katsumata et al., J. Electron Spectrosc. Relat. Phenom., 2000, 49, 113] in the gas phase have been simulated considering the Taylor expansion of the dipole moment from zero up to the second order as well as the changes of geometries/frequencies/normal modes between the initial neutral electronic ground state and the final (15a'(-1), 3a''(-1)) cationic states. It is shown that the vibrational profile of the first band (A') extending over 3500 cm-1 with a vibrational spacing of 500 cm-1 is not due solely to the overtones (v = 0 → v' = 1, 2, 3,…) of the C-CO bending mode as previously suggested but results from a collection of (v = 0 → v' = 1) transitions with frequencies multiple of 500 cm-1 associated with the CO stretching at 1550 cm-1, C-C stretching at 1045 cm-1 and C-CO, C-CN bending modes at 370/500 cm-1 completed by combination bands. Our calculations also reveal that the structureless and asymmetric shape of the second band (A'') is due to the activation of the torsion mode at low-frequency (ω ≈ 150 cm-1) induced by the rotation (60 degrees) of the methyl group blurring the main vibrational progression (ω ≈ 1115 cm-1) corresponding to the cooperative motions of the methyl CH bending and C-CO bending/CO stretching. Infra-red spectra of the fundamental and both the 15a'(-1) and 3a''(-1) cationic states were finally simulated. In contrast to the photoemission spectra, the infrared intensity of the CO stretching motion is very weak. The spectra are mainly dominated by the v = 0 → v = 1 transition of the CN stretching and the CH symmetric bending/stretching modes, providing complementary information between photoemission and infra-red spectroscopies to capture the nature of the cationic states in acetyl-cyanide.

5.
Phys Chem Chem Phys ; 24(2): 1131-1146, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34928271

ABSTRACT

We recently developed [A. Ferté, et al., J. Phys. Chem. Lett., 2020, 11, 4359] a method to compute single site double core hole (ssDCH or K-2) spectra. We refer to that method as NOTA+CIPSI. In the present paper this method is applied to the O K-2 spectrum of the CO2 molecule, and we use this as an example to discuss in detail its convergence properties. Using this approach, theoretical spectra in excellent agreement with the experimental one are obtained. Thanks to a thorough interpretation of the shake-up states responsible for the main satellite peaks and through comparison with the O K-2 spectrum of CO, we can highlight the clear signature of the two non-equivalent carbon oxygen bonds in the oxygen ssDCH CO2 dication.

6.
J Chem Phys ; 152(23): 234103, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32571045

ABSTRACT

Potential energy surfaces (PESs) play a central role in our understanding of chemical reactions. Despite the impressive development of efficient electronic structure methods and codes, such computations still remain a difficult task for the majority of relevant systems. In this context, artificial neural networks (NNs) are promising candidates to construct the PES for a wide range of systems. However, the choice of suitable molecular descriptors remains a bottleneck for these algorithms. In this work, we show that a principal component analysis (PCA) is a powerful tool to prepare an optimal set of descriptors and to build an efficient NN: this protocol leads to a substantial improvement of the NNs in learning and predicting a PES. Furthermore, the PCA provides a means to reduce the size of the input space (i.e., number of descriptors) without losing accuracy. As an example, we applied this novel approach to the computation of the high-dimensional PES describing the keto-enol tautomerism reaction occurring in the acetone molecule.

7.
J Phys Chem A ; 124(26): 5378-5388, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32491866

ABSTRACT

Combining experimental and ab initio core-level photoelectron spectroscopy (periodic DFT and quantum chemistry calculations), we elucidated how ammonia molecules bond to the hydroxyls of the (H,OH)-Si(001) model surface at a temperature of 130 K. Indeed, theory evaluated the magnitude and direction of the N 1s (and O 1s) chemical shifts according to the nature (acceptor or donor) of the hydrogen bond and, when confronted to experiment, showed unambiguously that the probe molecule makes one acceptor and one donor bond with a pair of hydroxyls. The consistency of our approach was proved by the fact that the identified adsorption geometries are precisely those that have the largest binding strength to the surface, as calculated by periodic DFT. Real-time core-level photoemission enabled measurement of the adsorption kinetics of H-bonded ammonia and its maximum coverage (0.37 ML) under 1.5 × 10-9 mbar. Experimental desorption free energies were compared to the magnitude of the adsorption energies provided by periodic DFT calculations. Minority species were also detected on the surface. As in the case of H-bonded ammonia, DFT core-level calculations were instrumental to attribute these minority species to datively bonded ammonia molecules, associated with isolated dangling bonds remaining on the surface, and to dissociated ammonia molecules, resulting largely from beam damage.

8.
J Phys Chem Lett ; 11(11): 4359-4366, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32392416

ABSTRACT

Double core hole spectroscopy is an ideal framework for investigating photoionization shake-up satellites. Their important intensity in a single site double core hole (ssDCH) spectrum allows the exploration of the subtle mix of relaxation and correlation effects associated with the inherent multielectronic character of the shake-up process. We present a high-accuracy computation method for single photon double core-shell photoelectron spectra that combines a selected configuration interaction procedure with the use of non-orthogonal molecular orbitals to obtain unbiased binding energy and intensity. This strategy leads to the oxygen ssDCH spectrum of the CO molecule that is in excellent agreement with the experimental result. Through a combined wave function and density analysis, we highlight that the most intense shake-up satellites are characterized by an electronic reorganization that opposes the core hole-induced relaxation.

9.
Phys Chem Chem Phys ; 20(32): 20756-20765, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29989120

ABSTRACT

Adenine, a DNA base, exists as several tautomers and isomers that are closely lying in energy and that may form a mixture upon vaporization of solid adenine. Indeed, it is challenging to bring adenine into the gas phase, especially as a unique tautomer. The experimental conditions were tuned to prepare a jet-cooled canonical adenine (9H-adenine). This isolated DNA base was ionized by single VUV photons from a synchrotron beamline and the corresponding slow photoelectron spectrum was compared to ab initio computations of the neutral and ionic species. We report the vibronic structure of the X+ 2A'' (D0), A+ 2A' (D1) and B+ 2A'' (D2) electronic states of the 9H adenine cation, from the adiabatic ionization energy (AIE) up to AIE + 1.8 eV. Accurate AIEs are derived for the 9H-adenine (X[combining tilde] 1A') + hν → 9H-adenine+ (X+ 2A'', A+ 2A', B+ 2A'') + e- transitions. Close to the AIE, we fully assign the rich vibronic structure solely to the 9H-adenine (X 1A') + hν → 9H-adenine+ (X+ 2A'') transition. Importantly, we show that the lowest cationic electronic states of canonical adenine are coupled vibronically. The present findings are important for understanding the effects of ionizing radiation and the charge distribution on this elementary building block of life, at ultrafast, short, and long timescales.


Subject(s)
Adenine/chemistry , Cations , Isomerism , Kinetics , Models, Molecular , Molecular Structure , Phase Transition , Photochemical Processes , Physical Phenomena , Quantum Theory , Thermodynamics
10.
Phys Chem Chem Phys ; 20(6): 4415-4421, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29372210

ABSTRACT

Hydride molecular ions are key ingredients of the interstellar chemistry since they are precursors of more complex molecules. In regions located near a soft X-ray source these ions may resonantly absorb an X-ray photon which triggers a complex chain of reactions. In this work, we simulate ab initio the X-ray absorption spectrum, Auger decay processes and the subsequent fragmentation dynamics of two hydride molecular ions, namely CH2+ and CH3+. We show that these ions feature strong X-ray absorption resonances which relax through Auger decay within 7 fs. The doubly-charged ions thus formed mostly dissociate into smaller ionic carbon fragments: in the case of CH2+, the dominant products are either C+/H+/H or CH+/H+. For CH3+, the system breaks primary into CH2+ and H+, which provides a new route to form CH2+ near a X-ray source. Furthermore, our simulations provide the branching ratios of the final products formed after the X-ray absorption as well as their kinetic and internal energy distributions. Such data can be used in the chemistry models of the interstellar medium.

11.
Phys Chem Chem Phys ; 20(1): 695, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29210389

ABSTRACT

Correction for 'Probing keto-enol tautomerism using photoelectron spectroscopy' by Nathalie Capron et al., Phys. Chem. Chem. Phys., 2015, 17, 19991-19996.

12.
ACS Appl Mater Interfaces ; 9(36): 30992-31004, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28805058

ABSTRACT

2,2',6,6'-Tetraphenyl-4,4'-dipyranylidene (DIPO-Ph4) was grown by vacuum deposition on an indium tin oxide (ITO) substrate. The films were characterized by atomic force microscopy as well as synchrotron radiation UV and X-ray photoelectron spectroscopy to gain an insight into the material growth and to better understand the electronic properties of the ITO/DIPO-Ph4 interface. To interpret our spectroscopic data, we consider the formation of cationic DIPO-Ph4 at the ITO interface owing to a charge transfer from the organic layer to the substrate. Ionization energy DFT calculations of the neutral and cationic species substantiate this hypothesis. Finally, we present the energetic diagram of the ITO/DIPO-Ph4 system, and we discuss the application of this interface in various technologically relevant systems, as a hole-injector in OLEDs or as a hole-collector interfacial layer adjacent to the prototypical OPV layer P3HT:PCBM.

13.
Phys Chem Chem Phys ; 18(33): 23231-7, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27499070

ABSTRACT

We have measured the differential conductance of the triethylamine molecule (N(CH2CH3)3) adsorbed on Si(001)-2 × 1 at room temperature using scanning tunneling spectroscopy. Triethylamine can be engaged in a dative bonding with a silicon dimer, forming a Si-Si-N(CH2CH3)3 unit. We have examined the datively bonded adduct, either as an isolated molecule, or within an ordered molecular domain (reconstructed 4 × 2). The differential conductance curves, supported by DFT calculations, show that in the explored energy window (±2.5 near the Fermi level) the main features stem from the uncapped dangling bonds of the reacted dimer and of the adjacent unreacted ones that are electronically coupled The formation of a molecular domain, in which one dimer in two is left unreacted, is reflected in a shift of the up dimer atom occupied level away from the Fermi level, likely due to an increased π-bonding strength. In stark contrast with the preceding, pairs of dissociated molecule (a minority species) are electronically decoupled from the dimer dangling bond states. DFT calculation show that the lone-pair of the Si-N(CH2CH3)2 is a shallow level, that is clearly seen in the differential conductance curve.

14.
Phys Rev Lett ; 116(21): 213001, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27284654

ABSTRACT

Creation of deep core holes with very short (τ≤1 fs) lifetimes triggers a chain of relaxation events leading to extensive nuclear dynamics on a few-femtosecond time scale. Here we demonstrate a general multistep ultrafast dissociation on an example of HCl following Cl 1s→σ^{*} excitation. Intermediate states with one or multiple holes in the shallower core electron shells are generated in the course of the decay cascades. The repulsive character and large gradients of the potential energy surfaces of these intermediates enable ultrafast fragmentation after the absorption of a hard x-ray photon.

15.
Phys Chem Chem Phys ; 17(30): 19991-6, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26172609

ABSTRACT

We theoretically investigate the mechanism of tautomerism in the gas-phase acetylacetone molecule. The minimum energy path between the enolone and diketo forms has been computed using the Nudged-Elastic Band (NEB) method within the density-functional theory (DFT) using the projector augmented-wave method and generalized gradient approximation in Perdew-Wang (PW91) parametrization. The lowest transition state as well as several intermediate geometries between the two stable tautomers have been identified. The outer-valence ionization spectra for all determined geometries have been computed using the third-order non-Dyson algebraic diagrammatic construction technique. Furthermore, the oxygen core-shell ionization spectra for these geometries have been obtained using DFT and the Becke three-parameter Lee-Yang-Parr (B3LYP) functional. It is shown that all spectra depend strongly on the geometries demonstrating the possibility of following the proton-transfer dynamics using photoelectron spectroscopy in pump-probe experiments.

16.
J Phys Condens Matter ; 27(5): 054005, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25414150

ABSTRACT

We have examined the reactivity of water-covered Si(0 0 1)-2 × 1, (H,OH)-Si(0 0 1)-2 × 1, with propanoic (C2H5COOH) acid at room temperature. Using a combination of spectroscopic techniques probing the electronic structure (XPS, NEXAFS) and the vibrational spectrum (HREELS), we have proved that the acid is chemisorbed on the surface as a propanoate. Once the molecule is chemisorbed, the strong perturbation of the electronic structure of the hydroxyls, and of their vibrational spectrum, suggests that the molecule makes hydrogen bonds with the surrounding hydroxyls. As we find evidence that surface hydroxyls are involved in the adsorption reaction, we discuss how a concerted or a radical-mediated reaction (involving the surface silicon dangling bonds) could lead to water elimination and formation of the ester.

17.
J Chem Phys ; 141(14): 144301, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25318716

ABSTRACT

We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

18.
J Chem Phys ; 140(23): 234303, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24952537

ABSTRACT

Raman Chirped Adiabatic Passage (RCAP) is an efficient method to climb the vibrational ladder of molecules. It was shown on the example of fixed-in-space HCl molecule that selective vibrational excitation can thus be achieved by RCAP and that population transfer can be followed by X-ray Photoelectron spectroscopy [S. Engin, N. Sisourat, P. Selles, R. Taïeb, and S. Carniato, Chem. Phys. Lett. 535, 192-195 (2012)]. Here, in a more detailed analysis of the process, we investigate the effects of highly excited electronic states and of molecular rotation on the efficiency of RCAP. Furthermore, we propose an alternative spectroscopic way to monitor the transfer by means of X-ray absorption spectra.

19.
J Phys Chem A ; 117(34): 8132-8, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23550700

ABSTRACT

We report a theoretical study of the selective vibrational excitation of a HCl molecule achieved by Raman chirped adiabatic passage (RCAP) and probed by X-ray photoelectron spectroscopy (XPS). It is demonstrated that HCl can be prepared in any vibrational level up to ν = 9 with nearly complete population inversion. We explore the effects of both the rotation of the molecule and of the temperature on the RCAP process, which is proved to be very robust. Furthermore, we emphasize that XPS spectra at the chlorine K-shell threshold show characteristic signatures of the populated vibrational level, allowing us to follow the RCAP process.

20.
J Chem Phys ; 137(15): 154304, 2012 Oct 21.
Article in English | MEDLINE | ID: mdl-23083162

ABSTRACT

We present accurate ab initio potential energy surfaces and dipole transition moments of numerous low-lying states of HCl in a large range of internuclear distances. Using these results, we computed the visible/ultra-violet absorption spectrum of HCl covering the energy range up to the first ionization potential and the absolute optical oscillator strengths for the first discrete electronic transitions. Comparison of these theoretical results is done with the available experimental and theoretical data. Finally, we present a complete peaks-attribution of the HCl electronic absorption spectrum. Our results are in good agreement with the available experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...