Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Cancer Radiother ; 26(8): 1016-1026, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35803860

ABSTRACT

PURPOSE: Radiotherapy with protons (PT) is a standard treatment of ocular tumors. It achieves excellent tumor control, limited toxicities, and the preservation of important functional outcomes, such as vision. Although PT may appear as one homogenous technique, it can be performed using dedicated ocular passive scattering PT or, increasingly, Pencil Beam Scanning (PBS), both with various degrees of patient-oriented customization. MATERAIAL AND METHODS: MEDICYC PT facility of Nice are detailed with respect to their technical, dosimetric, microdosimetric and radiobiological, patient and tumor-customization process of PT planning and delivery that are key. 6684 patients have been treated for ocular tumors (1991-2020). Machine characteristics (accelerator, beam line, beam monitoring) allow efficient proton extraction, high dose rate, sharp lateral and distal penumbrae, and limited stray radiation in comparison to beam energy reduction and subsequent straggling with high-energy PBS PT. Patient preparation before PT includes customized setup and image-guidance, CT-based planning, and ocular PT software modelling of the patient eye with integration of beam modifiers. Clinical reports have shown excellent tumor control rates (∼95%), vision preservation and limited toxicity rates (papillopathy, retinopathy, neovascular glaucoma, dry eye, madarosis, cataract). RESULTS: Although demanding, dedicated ocular PT has proven its efficiency in achieving excellent tumor control, OAR sparing and patient radioprotection. It is therefore worth adaptations of the equipments and practice. CONCLUSIONS: Some of these adaptations can be transferred to other PT centers and should be acknowledeged when using non-PT options.


Subject(s)
Neoplasms , Proton Therapy , Humans , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Eye , Protons
2.
Cancer Radiother ; 26(8): 1027-1033, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35803862

ABSTRACT

PURPOSE: In radiotherapy, the dose and volumes of the irradiated normal tissues is correlated to the complication rate. We assessed the performances of low-energy proton therapy (ocular PT) with eye-dedicated equipment, high energy PT with pencil-beam scanning (PBS) or CyberKnifeR  -based stereotactic irradiation (SBRT). MATERIAL AND METHODS: CT-based comparative dose distribution between external beam radiotherapy techniques was assessed using an anthropomorphic head phantom. The prescribed dose was 60Gy_RBE in 4 fractions to a typical posterior pole uveal melanoma. Clinically relevant structures were delineated, and doses were calculated using radiotherapy treatment planning softwares and measured using Gafchromic dosimetry films inserted at the ocular level. RESULTS: Precision was significantly better with ocular PT than both PBS or SBRT in terms of beam penumbra (80%-20%: laterally 1.4 vs. ≥10mm, distally 0.8 vs. ≥2.5mm). Ocular PT duration was shorter, allowing eye gating and lid sparing more easily. Tumor was excellent with all modalities, but ocular PT resulted in more homogenous and conformal dose compared to PBS or SBRT. The maximal dose to ocular/orbital structures at risk was smaller and often null with ocular PT compared to other modalities. Mean dose to ocular/orbital structures was also lower with ocular PT. Structures like the lids and lacrimal punctum could be preserved with ocular PT using gaze orientation and lid retractors, which is easier to implement clinically than with the other modalities. The dose to distant organs was null with ocular PT and PBS, in contrast to SBRT. CONCLUSIONS: ocular PT showed significantly improved beam penumbra, shorter treatment delivery time, better dose homogeneity, and reduced maximal/mean doses to critical ocular structures compared with other current external beam radiation modalities. Similar comparisons may be warranted for other tumor presentations.


Subject(s)
Proton Therapy , Radiosurgery , Uveal Neoplasms , Humans , Proton Therapy/methods , Radiosurgery/methods , Protons , Uveal Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
3.
Opt Express ; 28(20): 29676-29690, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-33114861

ABSTRACT

In the analysis of the on-axis intensity for a highly focused optical field, it is highly desirable to deal with effective relations aimed at characterizing the field behavior in a rather simple fashion. Here, a novel and adequate measure for the size of the region where the axial power content mainly concentrates is proposed on the basis of an uncertainty principle. Accordingly, a meaningful relationship is provided for both the spread of the incident beam at the entrance of the highly focused optical system and the size of the region where the on-axis power mainly concentrates.

4.
Radiat Prot Dosimetry ; 161(1-4): 373-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24222711

ABSTRACT

Secondary radiation, particularly neutron radiation, is a cause of concern in proton therapy. However, one can take advantage of its presence by using it to retrieve useful information on the primary proton beam. At the Centre Antoine Lacassagne the secondary radiation in the treatment room has been studied in function of the beam modulation. A strong correlation was found between the secondary ambient dose equivalent per proton dose H*(10)/D and proton dose rate D/MU. A large volume ionisation chamber fixed on the wall at 2.5 m from the nozzle was used with an in-house computer interface to retrieve the value of D/MU derived from the measurement of photon H*(10) integrated over treatment time, using the correlation curve. This system enables the verification of D and D/MU to be made independently of the monitoring of the primary beam and represents a first step towards an alternative in vivo dosimetry in proton therapy.


Subject(s)
Eye/radiation effects , Proton Therapy/methods , Radiation Protection/methods , Radiometry/instrumentation , Radiometry/methods , Algorithms , Computer Simulation , Equipment Design , Facility Design and Construction , Humans , Models, Statistical , Monte Carlo Method , Neutrons , Photons , Proton Therapy/instrumentation , Quality Control , Radiation Protection/instrumentation , Radiotherapy Dosage , Reproducibility of Results , Scattering, Radiation
5.
J Environ Manage ; 128: 210-9, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23764505

ABSTRACT

The degradation of a pharmaceutical wastewater using a ferrioxalate-assisted solar/photo-Fenton system has been studied. The photochemical reaction was carried out in a pilot plant consisting of a compound parabolic collector (CPC) solar reactor. An optimization study was performed combining a multivariate experimental design and Neuronal Networks that included the following variables: initial concentrations of H2O2, catalyst Fe (II) and oxalic acid (H2C2O4), temperature and solar power. Under optimal conditions, 84% TOC (Total Organic Carbon) removal was achieved in 115 min. Oxalic acid had a positive effect on mineralization when solar power was above 30 W m(-2). The minimum amount of H2O2 to degrade 1 mol of TOC was found to be 3.57 mol. Both the H2O2 conversion efficiency and the degree of mineralization were highest when the oxalic/Fe(II) initial molar relation was close to 3. HO radicals were the main oxidative intermediate species in the process, although hydroperoxyl radicals (HO(2)(·)) also played a role.


Subject(s)
Drug Industry , Oxalates/chemistry , Waste Disposal, Fluid/methods , Wastewater/chemistry , Catalysis , Costs and Cost Analysis , Equipment Design , Hydrogen Peroxide/chemistry , Industrial Waste , Neural Networks, Computer , Oxalic Acid/chemistry , Oxidation-Reduction , Photochemistry/methods , Solar Energy , Sunlight , Temperature , Waste Disposal, Fluid/economics , Waste Disposal, Fluid/instrumentation
6.
Med Phys ; 40(6): 061708, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23718587

ABSTRACT

PURPOSE: Proton scattering on beam shaping devices and protons slowing down on media with different densities within the treatment volume may produce dose perturbations and range variations that are not predicted by treatment planning systems. The aim of this work was to assess the dosimetric impact of elements present in ocular proton therapy treatments that may disturb the prescribed treatment plan. Both distal beam shaping devices and intraocular elements were considered. METHODS: A wedge filter, tantalum fiducial marker, hemispherical compensator, two intraocular endotamponades (densities 0.97 and 1.92 g cm(-3)) and an intraocular eye lens (IOL) were considered in the study. For these elements, longitudinal dose distributions were measured and∕or calculated in water in beam alignment for a clinical spread-out Bragg peak. Under the same conditions, the unperturbed dose distributions were similarly measured and∕or calculated in the absence of the element. The dosimetric impact was assessed by comparison of unperturbed and perturbed dose distributions. Measurements and calculations were carried out with two methods. Measurements are based on EBT3 films with dedicated software, which makes use of a calibration curve and correction for the quenching effect. Calculations are based on the Monte Carlo (MC) code MCNPX and reproduce the experimental conditions. Both dose maps are obtained with a resolution of 300 dpi. RESULTS: The degree of disturbance of distal beam shaping devices is low for the wedge filter (2% overdose ripple all along the central axis) and moderate for the hemispherical compensator (two bands of variable overdose of up to 10% downstream the compensator lateral edges and -5% underdose on the plateau at off-axis distance of 5 cm). Tantalum clips produce important dose shadows (-20% behind the clip parallel to the beam and range reduction of 1.1 mm) and bands of overdose (15%). The presence of endotamponades modifies the dose distribution very significantly (-5% underdose on the plateau and 3 mm range prolongation for the tamponade with density 0.97 g cm(-3) and -15% underdose on plateau and 8 mm range reduction for that with density 1.92 g cm(-3)). No dose perturbations were found for the IOL. The high performance of EBT3 film and MC tools used was confirmed and good agreement was found between them (percentage of pixels passing the gamma test >87%). CONCLUSIONS: The degree of disturbance by external beam shaping devices remains low in ocular proton therapy and can be reduced by bringing accessories closer to the eye. Tantalum fiducial markers must be located in such a way that dose perturbation is not projected on the tumor. The treatment of patients with intraocular endotamponades must be carefully managed. It is fundamental that radiation oncologists and medical physicists are informed about the presence of such substances prior to the treatment.


Subject(s)
Eye Neoplasms/radiotherapy , Proton Therapy , Radiation Protection/instrumentation , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/instrumentation , Radiotherapy, Conformal/methods , Equipment Design , Equipment Failure Analysis , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
7.
Med Phys ; 39(12): 7303-16, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23231280

ABSTRACT

PURPOSE: Secondary particles produced in the collision of protons with beam modifiers are of concern in proton therapy. Nevertheless, secondary radiation can provide information on the dosimetric parameters through its dependency on the modulating accessories (range shifter and range modulating wheel). Relatively little data have been reported in the literature for low-energy proton beams. The present study aims at characterizing the neutron and photon secondary radiation at the low-energy proton therapy facility of the Centre Antoine Lacassagne (CAL), and studying their correlation to the dosimetric parameters to explore possible practical uses of secondary radiation in the treatment quality for proton therapy. METHODS: The Monte Carlo code MCNPX was used to simulate the proton therapy facility at CAL. Neutron and photon fluence, Φ, and ambient dose equivalent per proton dose, H∗(10)∕D, were determined across the horizontal main plane spanning the whole treatment room. H∗(10)∕D was also calculated at two positions of the treatment room where dosimetric measurements were performed for validation of the Monte Carlo calculations. Calculations and measurements were extended to 100 clinical spread-out Bragg Peaks (SOBPs) covering the whole range of therapeutic dose rates (D∕MU) employed at CAL. In addition, the values of D and MU were also calculated for each SOBP and the results analyzed to study the relationship between secondary radiation and dosimetric parameters. RESULTS: The largest production of the secondary particles takes place at the modulating devices and the brass collimators located along the optical bench. Along the beam line and off the beam axis to 2.5 m away, H∗(10)∕D values ranged from 5.4 µSv∕Gy to 5.3 mSv∕Gy for neutrons, and were 1 order of magnitude lower for photons. H∗(10)∕D varied greatly with the distance and angle to the beam axis. A variation of a factor of 5 was found for the different range of modulations (SOBPs). The ratios between calculations and measurements were 2.3 and 0.5 for neutrons and photons, respectively, and remained constant for all the range of SOBPs studied, which provided validation for the Monte Carlo calculations. H∗(10)∕D values were found to correlate to the proton dose rate D∕MU with a power fit, both for neutrons and photons. This result was exploited to implement a system to obtain D∕MU values from the measurement of the integrated photon ambient dose equivalent H∗(10) during treatment, which provides a method to control the dosimetric parameters D∕MU and D. CONCLUSIONS: The treatment room at CAL is moderately polluted by secondary particles. The constant ratio between measurements and calculations for all SOBPs showed that simulations correctly predict the dosimetric parameters and the dependence of the production of secondary particles on the modulation. The correlation between H∗(10)∕D and D∕MU is a useful tool for quality control and is currently used at CAL. This system works as an indirect in vivo dosimetry method, which is so far not feasible in proton therapy. This tool requires very simple instrumentation and can be implemented from the measurement of either photons or neutrons.


Subject(s)
Models, Statistical , Proton Therapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Computer Simulation , Monte Carlo Method , Radiotherapy Dosage
8.
Radiat Prot Dosimetry ; 144(1-4): 515-20, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21233097

ABSTRACT

The Work Package 4 of the ORAMED project, a collaborative project (2008-11) supported by the European Commission within its seventh Framework Programme, is concerned with the optimisation of the extremity dosimetry of medical staff in nuclear medicine. To evaluate the extremity doses and dose distributions across the hands of medical staff working in nuclear medicine departments, an extensive measurement programme has been started in 32 nuclear medicine departments in Europe. This was done using a standard protocol recording all relevant information for radiation exposure, i.e. radiation protection devices and tools. This study shows the preliminary results obtained for this measurement campaign. For diagnostic purposes, the two most-used radionuclides were considered: (99m)Tc and (18)F. For therapeutic treatments, Zevalin(®) and DOTATOC (both labelled with (90)Y) were chosen. Large variations of doses were observed across the hands depending on different parameters. Furthermore, this study highlights the importance of the positioning of the extremity dosemeter for a correct estimate of the maximum skin doses.


Subject(s)
Extremities/radiation effects , Nuclear Medicine , Occupational Exposure/prevention & control , Radiation Monitoring/methods , Radiation Protection/methods , Radiometry/methods , Europe , Fingers/radiation effects , Fluorine Radioisotopes/analysis , Humans , Nuclear Medicine/methods , Radiation Dosage , Radioisotopes/analysis , Reproducibility of Results , Skin/radiation effects , Technetium/analysis , Workforce
9.
Opt Express ; 16(5): 2845-58, 2008 Mar 03.
Article in English | MEDLINE | ID: mdl-18542369

ABSTRACT

In terms of the Fourier spectrum, a simple but general analytical expression is given for the evanescent field associated to a certain kind of non-paraxial exact solutions of the Maxwell equations. This expression enables one to compare the relative weight of the evanescent wave with regard to the propagating field. In addition, in those cases in which the evanescent term is significant, the magnitude of the field components across the transverse profile (including the evanescent features) can be determined. These results are applied to some illustrative examples.


Subject(s)
Algorithms , Models, Theoretical , Computer Simulation , Light , Scattering, Radiation
10.
J Opt Soc Am A Opt Image Sci Vis ; 18(7): 1678-80, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11444561

ABSTRACT

A representation of the general solution of the Maxwell equations is proposed in terms of the plane-wave spectrum of the electromagnetic field. In this representation the electric field solution is written as a sum of two terms that are orthogonal to each other at the far field: One is transverse to the propagation axis, and the magnetic field associated with the other is also transverse. The concept of the so-called closest field to a given beam is introduced and applied to the well-known linearly polarized Gaussian beam.

11.
Appl Opt ; 39(5): 766-9, 2000 Feb 10.
Article in English | MEDLINE | ID: mdl-18337951

ABSTRACT

The development of liquid-crystal panels for use in commercial equipment has been aimed at improving the pixel resolution and the display efficiency. These improvements have led to a reduction in the thickness of such devices, among other outcomes, that involves a loss in phase modulation. We propose a modification of the classical phase-only filter to permit displays in VGA liquid-crystal panels with a constant amplitude modulation and less than a 2pi phase modulation. The method was tested experimentally in an optical setup.

12.
Appl Opt ; 38(29): 6111-5, 1999 Oct 10.
Article in English | MEDLINE | ID: mdl-18324133

ABSTRACT

We propose a method to obtain a single centered correlation with use of a joint transform correlator. We analyze the required setup to carry out the whole process optically, and we also present experimental results.

13.
Appl Opt ; 36(20): 4807-11, 1997 Jul 10.
Article in English | MEDLINE | ID: mdl-18259282

ABSTRACT

We present a method to detect patterns in defocused scenes by means of a joint transform correlator. We describe analytically the correlation plane, and we also introduce an original procedure to recognize the target by postprocessing the correlation plane. The performance of the methodology when the defocused images are corrupted by additive noise is also considered.

14.
Appl Opt ; 34(20): 3942-9, 1995 Jul 10.
Article in English | MEDLINE | ID: mdl-21052217

ABSTRACT

The use of different kinds of nonlinear filtering in a joint transform correlator are studied and compared. The study is divided into two parts, one corresponding to object space and the second to the Fourier domain of the joint power spectrum. In the first part, phase and inverse filters are computed; their inverse Fourier transforms are also computed, thereby becoming the reference in the object space. In the Fourier space, the binarization of the power spectrum is realized and compared with a new procedure for removing the spatial envelope. All cases are simulated and experimentally implemented by a compact joint transform correlator.

15.
Appl Opt ; 33(14): 3070-5, 1994 May 10.
Article in English | MEDLINE | ID: mdl-20885670

ABSTRACT

In multiobject pattern recognition the height of the correlation peaks should be controlled when the power spectrum of ajoint transform correlator is binarized. In this paper a method to predetermine the value of detection peaks is demonstrated. The technique is based on a frequency-variant threshold in order to remove the intraclass terms and on a suitable factor to normalize the binary joint power spectrum. Digital simulations and experimental hybrid implementation of this method were carried out.

16.
Appl Opt ; 31(8): 1012-4, 1992 Mar 10.
Article in English | MEDLINE | ID: mdl-20720716

ABSTRACT

It is possible to improve the fringe binarization method of joint transform correlation by choosing a suitable threshold level.

SELECTION OF CITATIONS
SEARCH DETAIL
...