Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(19): eadl1230, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718109

ABSTRACT

The spinal cord is crucial for transmitting motor and sensory information between the brain and peripheral systems. Spinal cord injuries can lead to severe consequences, including paralysis and autonomic dysfunction. We introduce thin-film, flexible electronics for circumferential interfacing with the spinal cord. This method enables simultaneous recording and stimulation of dorsal, lateral, and ventral tracts with a single device. Our findings include successful motor and sensory signal capture and elicitation in anesthetized rats, a proof-of-concept closed-loop system for bridging complete spinal cord injuries, and device safety verification in freely moving rodents. Moreover, we demonstrate potential for human application through a cadaver model. This method sees a clear route to the clinic by using materials and surgical practices that mitigate risk during implantation and preserve cord integrity.


Subject(s)
Spinal Cord Injuries , Spinal Cord , Animals , Spinal Cord/physiology , Rats , Spinal Cord Injuries/therapy , Spinal Cord Injuries/physiopathology , Humans , Electric Stimulation/methods , Electrodes, Implanted
2.
Nat Mater ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671159

ABSTRACT

Electrode arrays that interface with peripheral nerves are used in the diagnosis and treatment of neurological disorders; however, they require complex placement surgeries that carry a high risk of nerve injury. Here we leverage recent advances in soft robotic actuators and flexible electronics to develop highly conformable nerve cuffs that combine electrochemically driven conducting-polymer-based soft actuators with low-impedance microelectrodes. Driven with applied voltages as small as a few hundreds of millivolts, these cuffs allow active grasping or wrapping around delicate nerves. We validate this technology using in vivo rat models, showing that the cuffs form and maintain a self-closing and reliable bioelectronic interface with the sciatic nerve of rats without the use of surgical sutures or glues. This seamless integration of soft electrochemical actuators with neurotechnology offers a path towards minimally invasive intraoperative monitoring of nerve activity and high-quality bioelectronic interfaces.

3.
Biomaterials ; 303: 122393, 2023 12.
Article in English | MEDLINE | ID: mdl-37977006

ABSTRACT

Spinal cord injuries have devastating consequences for humans, as mammalian neurons of the central nervous system (CNS) cannot regenerate. In the peripheral nervous system (PNS), however, neurons may regenerate to restore lost function following injury. While mammalian CNS tissue softens after injury, how PNS tissue mechanics changes in response to mechanical trauma is currently poorly understood. Here we characterised mechanical rat nerve tissue properties before and after in vivo crush and transection injuries using atomic force microscopy-based indentation measurements. Unlike CNS tissue, PNS tissue significantly stiffened after both types of tissue damage. This nerve tissue stiffening strongly correlated with an increase in collagen I levels. Schwann cells, which crucially support PNS regeneration, became more motile and proliferative on stiffer substrates in vitro, suggesting that changes in tissue stiffness may play a key role in facilitating or impeding nervous system regeneration.


Subject(s)
Nerve Tissue , Spinal Cord Injuries , Humans , Rats , Animals , Central Nervous System , Schwann Cells/physiology , Neurons , Nerve Regeneration/physiology , Axons/physiology , Mammals
4.
J Neural Eng ; 20(5)2023 10 09.
Article in English | MEDLINE | ID: mdl-37757803

ABSTRACT

Objective.This study aims to develop a comprehensive decoding framework to create a multivariate physiological model of vagus nerve transmission that reveals the complex interactions between the nervous and metabolic systems.Approach.Vagus nerve activity was recorded in female Sprague-Dawley rats using gold hook microwires implanted around the left cervical vagus nerve. The rats were divided into three experimental cohorts (intact nerve, ligation nerve for recording afferent activation, and ligation for recording efferent activation) and metabolic challenges were administered to change glucose levels while recording the nerve activity. The decoding methodology involved various techniques, including continuous wavelet transformation, extraction of breathing rate (BR), and correlation of neural metrics with physiological signals.Main results.Decrease in glucose level was consistently negatively correlated with an increase in the firing activity of the intact vagus nerve that was found to be conveyed by both afferent and efferent pathways, with the afferent response being more similar to the one on the intact nerve. A larger variability was observed in the sensory and motor responses to hyperglycaemia. A novel strategy to extract the BR over time based on inter-burst-interval is also presented. The vagus afferent was found to encode breathing information through amplitude and firing rate modulation. Modulations of the signal amplitude were also observed due to changes in heart rate in the intact and efferent recordings, highlighting the parasympathetic control of the heart.Significance.The analytical framework presented in this study provides an integrative understanding that considers the relationship between metabolic, cardiac, and breathing signals and contributes to the development of a multivariable physiological model for the transmission of vagus nerve signals. This work progresses toward the development of closed-loop neuro-metabolic therapeutic systems for diabetes.


Subject(s)
Diabetes Mellitus , Vagus Nerve Stimulation , Rats , Female , Animals , Rats, Sprague-Dawley , Vagus Nerve/physiology , Heart/innervation , Diabetes Mellitus/metabolism , Glucose/metabolism , Vagus Nerve Stimulation/methods
5.
Adv Sci (Weinh) ; 10(29): e2301756, 2023 10.
Article in English | MEDLINE | ID: mdl-37485646

ABSTRACT

Astrocytes are diverse brain cells that form large networks communicating via gap junctions and chemical transmitters. Despite recent advances, the functions of astrocytic networks in information processing in the brain are not fully understood. In culture, brain slices, and in vivo, astrocytes, and neurons grow in tight association, making it challenging to establish whether signals that spread within astrocytic networks communicate with neuronal groups at distant sites, or whether astrocytes solely respond to their local environments. A multi-electrode array (MEA)-based device called AstroMEA is designed to separate neuronal and astrocytic networks, thus allowing to study the transfer of chemical and/or electrical signals transmitted via astrocytic networks capable of changing neuronal electrical behavior. AstroMEA demonstrates that cortical astrocytic networks can induce a significant upregulation in the firing frequency of neurons in response to a theta-burst charge-balanced biphasic current stimulation (5 pulses of 100 Hz × 10 with 200 ms intervals, 2 s total duration) of a separate neuronal-astrocytic group in the absence of direct neuronal contact. This result corroborates the view of astrocytic networks as a parallel mechanism of signal transmission in the brain that is separate from the neuronal connectome. Translationally, it highlights the importance of astrocytic network protection as a treatment target.


Subject(s)
Astrocytes , Gap Junctions , Gap Junctions/physiology , Neurons , Brain
6.
Adv Mater ; 35(38): e2301782, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37212503

ABSTRACT

Neural recording systems have significantly progressed to provide an advanced understanding and treatment for neurological diseases. Flexible transistor-based active neural probes exhibit great potential in electrophysiology applications due to their intrinsic amplification capability and tissue-compliant nature. However, most current active neural probes exhibit bulky back-end connectivity since the output is current, and the development of an integrated circuit for voltage output is crucial for near-sensor signal processing at the abiotic/biotic interface. Here, inkjet-printed organic voltage amplifiers are presented by monolithically integrating organic electrochemical transistors and thin-film polymer resistors on a single, highly flexible substrate for in vivo brain activity recording. Additive inkjet printing enables the seamless integration of multiple active and passive components on the somatosensory cortex, leading to significant noise reduction over the externally connected typical configuration. It also facilitates fine-tuning of the voltage amplification and frequency properties. The organic voltage amplifiers are validated as electrocorticography devices in a rat in vivo model, showing their ability to record local field potentials in an experimental model of spontaneous and epileptiform activity. These results bring organic active neural probes to the forefront in applications where efficient sensory data processing is performed at sensor endpoints.


Subject(s)
Brain , Electrocorticography , Rats , Animals , Brain/physiology , Signal Processing, Computer-Assisted , Electrodes, Implanted , Equipment Design
7.
Sci Adv ; 9(12): eadd8162, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36947608

ABSTRACT

The development of neural interfaces with superior biocompatibility and improved tissue integration is vital for treating and restoring neurological functions in the nervous system. A critical factor is to increase the resolution for mapping neuronal inputs onto implants. For this purpose, we have developed a new category of neural interface comprising induced pluripotent stem cell (iPSC)-derived myocytes as biological targets for peripheral nerve inputs that are grafted onto a flexible electrode arrays. We show long-term survival and functional integration of a biohybrid device carrying human iPSC-derived cells with the forearm nerve bundle of freely moving rats, following 4 weeks of implantation. By improving the tissue-electronics interface with an intermediate cell layer, we have demonstrated enhanced resolution and electrical recording in vivo as a first step toward restorative therapies using regenerative bioelectronics.


Subject(s)
Neurons , Peripheral Nerves , Rats , Humans , Animals , Electrodes , Nerve Regeneration
8.
Adv Mater ; 35(8): e2207847, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36458737

ABSTRACT

Bioelectronics hold the key for understanding and treating disease. However, achieving stable, long-term interfaces between electronics and the body remains a challenge. Implantation of a bioelectronic device typically initiates a foreign body response, which can limit long-term recording and stimulation efficacy. Techniques from regenerative medicine have shown a high propensity for promoting integration of implants with surrounding tissue, but these implants lack the capabilities for the sophisticated recording and actuation afforded by electronics. Combining these two fields can achieve the best of both worlds. Here, the construction of a hybrid implant system for creating long-term interfaces with tissue is shown. Implants are created by combining a microelectrode array with a bioresorbable and remodellable gel. These implants are shown to produce a minimal foreign body response when placed into musculature, allowing one to record long-term electromyographic signals with high spatial resolution. This device platform drives the possibility for a new generation of implantable electronics for long-term interfacing.


Subject(s)
Electronics , Foreign Bodies , Humans , Prostheses and Implants , Microelectrodes , Regenerative Medicine
9.
Mater Horiz ; 9(6): 1727-1734, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35474130

ABSTRACT

New fabrication approaches for mechanically flexible implants hold the key to advancing the applications of neuroengineering in fundamental neuroscience and clinic. By combining the high precision of thin film microfabrication with the versatility of additive manufacturing, we demonstrate a straight-forward approach for the prototyping of intracranial implants with electrode arrays and microfluidic channels. We show that the implant can modulate neuronal activity in the hippocampus through localized drug delivery, while simultaneously recording brain activity by its electrodes. Moreover, good implant stability and minimal tissue response are seen one-week post-implantation. Our work shows the potential of hybrid fabrication combining different manufacturing techniques in neurotechnology and paves the way for a new approach to the development of multimodal implants.


Subject(s)
Electrophysiological Phenomena , Neurosciences , Cardiac Electrophysiology , Microtechnology , Prostheses and Implants
10.
J Neural Eng ; 19(2)2022 04 14.
Article in English | MEDLINE | ID: mdl-35320780

ABSTRACT

Bioelectronic stimulation of the spinal cord has demonstrated significant progress in the restoration of motor function in spinal cord injury (SCI). The proximal, uninjured spinal cord presents a viable target for the recording and generation of control signals to drive targeted stimulation. Signals have been directly recorded from the spinal cord in behaving animals and correlated with limb kinematics. Advances in flexible materials, electrode impedance and signal analysis will allow spinal cord recording (SCR) to be used in next-generation neuroprosthetics. In this review, we summarize the technological advances enabling progress in SCR and describe systematically the clinical challenges facing spinal cord bioelectronic interfaces and potential solutions, from device manufacture, surgical implantation to chronic effects of foreign body reaction and stress-strain mismatches between electrodes and neural tissue. Finally, we establish our vision of bi-directional closed-loop spinal cord bioelectronic bypass interfaces that enable the communication of disrupted sensory signals and restoration of motor function in SCI.


Subject(s)
Spinal Cord Injuries , Spinal Cord , Animals , Biomechanical Phenomena , Electrodes , Spinal Cord/physiology , Spinal Cord Injuries/therapy
11.
Proc Natl Acad Sci U S A ; 119(12): e2115857119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35298334

ABSTRACT

SignificanceImplantable electronic medical devices (IEMDs) are used for some clinical applications, representing an exciting prospect for the transformative treatment of intractable conditions such Parkinson's disease, deafness, and paralysis. The use of IEMDs is limited at the moment because, over time, a foreign body reaction (FBR) develops at the device-neural interface such that ultimately the IEMD fails and needs to be removed. Here, we show that macrophage nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity drives the FBR in a nerve injury model yet integration of an NLRP3 inhibitor into the device prevents FBR while allowing full healing of damaged neural tissue to occur.


Subject(s)
Foreign Bodies , Inflammasomes , Humans , Macrophages , NLR Family, Pyrin Domain-Containing 3 Protein , Prostheses and Implants
12.
Biosensors (Basel) ; 11(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34436077

ABSTRACT

Brain-computer interfaces (BCI) are reliant on the interface between electrodes and neurons to function. The foreign body reaction (FBR) that occurs in response to electrodes in the brain alters this interface and may pollute detected signals, ultimately impeding BCI function. The size of the FBR is influenced by several key factors explored in this review; namely, (a) the size of the animal tested, (b) anatomical location of the BCI, (c) the electrode morphology and coating, (d) the mechanics of electrode insertion, and (e) pharmacological modification (e.g., drug eluting electrodes). Trialing methods to reduce FBR in vivo, particularly in large models, is important to enable further translation in humans, and we systematically reviewed the literature to this effect. The OVID, MEDLINE, EMBASE, SCOPUS and Scholar databases were searched. Compiled results were analysed qualitatively. Out of 8388 yielded articles, 13 were included for analysis, with most excluded studies experimenting on murine models. Cats, rabbits, and a variety of breeds of minipig/marmoset were trialed. On average, over 30% reduction in inflammatory cells of FBR on post mortem histology was noted across intervention groups. Similar strategies to those used in rodent models, including tip modification and flexible and sinusoidal electrode configurations, all produced good effects in histology; however, a notable absence of trials examining the effect on BCI end-function was noted. Future studies should assess whether the reduction in FBR correlates to an improvement in the functional effect of the intended BCI.


Subject(s)
Brain-Computer Interfaces , Foreign-Body Reaction , Animals , Brain , Cats , Electrodes, Implanted , Electroencephalography , Mice , Rabbits , Swine , Swine, Miniature
13.
Front Bioeng Biotechnol ; 9: 622524, 2021.
Article in English | MEDLINE | ID: mdl-33937212

ABSTRACT

The implantation of any foreign material into the body leads to the development of an inflammatory and fibrotic process-the foreign body reaction (FBR). Upon implantation into a tissue, cells of the immune system become attracted to the foreign material and attempt to degrade it. If this degradation fails, fibroblasts envelop the material and form a physical barrier to isolate it from the rest of the body. Long-term implantation of medical devices faces a great challenge presented by FBR, as the cellular response disrupts the interface between implant and its target tissue. This is particularly true for nerve neuroprosthetic implants-devices implanted into nerves to address conditions such as sensory loss, muscle paralysis, chronic pain, and epilepsy. Nerve neuroprosthetics rely on tight interfacing between nerve tissue and electrodes to detect the tiny electrical signals carried by axons, and/or electrically stimulate small subsets of axons within a nerve. Moreover, as advances in microfabrication drive the field to increasingly miniaturized nerve implants, the need for a stable, intimate implant-tissue interface is likely to quickly become a limiting factor for the development of new neuroprosthetic implant technologies. Here, we provide an overview of the material-cell interactions leading to the development of FBR. We review current nerve neuroprosthetic technologies (cuff, penetrating, and regenerative interfaces) and how long-term function of these is limited by FBR. Finally, we discuss how material properties (such as stiffness and size), pharmacological therapies, or use of biodegradable materials may be exploited to minimize FBR to nerve neuroprosthetic implants and improve their long-term stability.

14.
Adv Healthc Mater ; 10(17): e2100374, 2021 09.
Article in English | MEDLINE | ID: mdl-33991046

ABSTRACT

Surface electromyography (EMG) is used as a medical diagnostic and to control prosthetic limbs. Electrode arrays that provide large-area, high density recordings have the potential to yield significant improvements in both fronts, but the need remains largely unfulfilled. Here, digital fabrication techniques are used to make scalable electrode arrays that capture EMG signals with mm spatial resolution. Using electrodes made of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) composites with the biocompatible ionic liquid (IL) cholinium lactate, the arrays enable high quality spatiotemporal recordings from the forearm of volunteers. These recordings allow to identify the motions of the index, little, and middle fingers, and to directly visualize the propagation of polarization/depolarization waves in the underlying muscles. This work paves the way for scalable fabrication of cutaneous electrophysiology arrays for personalized medicine and highly articulate prostheses.


Subject(s)
Ionic Liquids , Electrodes , Electromyography , Forearm , Humans , Polymers
15.
Gene Ther ; 28(1-2): 56-74, 2021 02.
Article in English | MEDLINE | ID: mdl-32576975

ABSTRACT

Adeno-associated viral vectors are widely used as vehicles for gene transfer to the nervous system. The promoter and viral vector serotype are two key factors that determine the expression dynamics of the transgene. A previous comparative study has demonstrated that AAV1 displays efficient transduction of layer V corticospinal neurons, but the optimal promoter for transgene expression in corticospinal neurons has not been determined yet. In this paper, we report a side-by-side comparison between four commonly used promoters: the short CMV early enhancer/chicken ß actin (sCAG), human cytomegalovirus (hCMV), mouse phosphoglycerate kinase (mPGK) and human synapsin (hSYN) promoter. Reporter constructs with each of these promoters were packaged in AAV1, and were injected in the sensorimotor cortex of rats and mice in order to transduce the corticospinal tract. Transgene expression levels and the cellular transduction profile were examined after 6 weeks. The AAV1 vectors harbouring the hCMV and sCAG promoters resulted in transgene expression in neurons, astrocytes and oligodendrocytes. The mPGK and hSYN promoters directed the strongest transgene expression. The mPGK promoter did drive expression in cortical neurons and oligodendrocytes, while transduction with AAV harbouring the hSYN promoter resulted in neuron-specific expression, including perineuronal net expressing interneurons and layer V corticospinal neurons. This promoter comparison study contributes to improve transgene delivery into the brain and spinal cord. The optimized transduction of the corticospinal tract will be beneficial for spinal cord injury research.


Subject(s)
Dependovirus , Pyramidal Tracts , Animals , Dependovirus/genetics , Genetic Vectors/genetics , Mice , Promoter Regions, Genetic , Rats , Transduction, Genetic , Transgenes
16.
Adv Mater ; 32(15): e1903182, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31517403

ABSTRACT

The development of electronics capable of interfacing with the nervous system is a rapidly advancing field with applications in basic science and clinical translation. Devices containing arrays of electrodes can be used in the study of cells grown in culture or can be implanted into damaged or dysfunctional tissue to restore normal function. While devices are typically designed and used exclusively for one of these two purposes, there have been increasing efforts in developing implantable electrode arrays capable of housing cultured cells, referred to as biohybrid implants. Once implanted, the cells within these implants integrate into the tissue, serving as a mediator of the electrode-tissue interface. This biological component offers unique advantages to these implant designs, providing better tissue integration and potentially long-term stability. Herein, an overview of current research into biohybrid devices, as well as the historical background that led to their development are provided, based on the host anatomical location for which they are designed (CNS, PNS, or special senses). Finally, a summary of the key challenges of this technology and potential future research directions are presented.


Subject(s)
Microfluidics/methods , Neurons/physiology , Animals , Cochlear Implantation , Electrodes, Implanted , Humans , Microarray Analysis , Regenerative Medicine , Stem Cell Transplantation , Tissue Engineering
17.
Hum Reprod ; 34(10): 1999-2008, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31579915

ABSTRACT

STUDY QUESTION: What is the stiffness (elastic modulus) of human nonpregnant secretory phase endometrium, first trimester decidua, and placenta? SUMMARY ANSWER: The stiffness of decidua basalis, the site of placental invasion, was an order of magnitude higher at 103 Pa compared to 102 Pa for decidua parietalis, nonpregnant endometrium and placenta. WHAT IS KNOWN ALREADY: Mechanical forces have profound effects on cell behavior, regulating both cell differentiation and migration. Despite their importance, very little is known about their effects on blastocyst implantation and trophoblast migration during placental development because of the lack of mechanical characterization at the human maternal-fetal interface. STUDY DESIGN, SIZE, DURATION: An observational study was conducted to measure the stiffness of ex vivo samples of human nonpregnant secretory endometrium (N = 5) and first trimester decidua basalis (N = 6), decidua parietalis (N = 5), and placenta (N = 5). The stiffness of the artificial extracellular matrix (ECM), Matrigel®, commonly used to study migration of extravillous trophoblast (EVT) in three dimensions and to culture endometrial and placental organoids, was also determined (N = 5). PARTICIPANTS/MATERIALS, SETTING, METHODS: Atomic force microscopy was used to perform ex vivo direct measurements to determine the stiffness of fresh tissue samples. Decidua was stained by immunohistochemistry (IHC) for HLA-G+ EVT to confirm whether samples were decidua basalis or decidua parietalis. Endometrium was stained with hematoxylin and eosin to confirm the presence of luminal epithelium. Single-cell RNA sequencing data were analyzed to determine expression of ECM transcripts by decidual and placental cells. Fibrillin 1, a protein identified by these data, was stained by IHC in decidua basalis. MAIN RESULTS AND THE ROLE OF CHANCE: We observed that decidua basalis was significantly stiffer than decidua parietalis, at 1250 and 171 Pa, respectively (P < 0.05). The stiffness of decidua parietalis was similar to nonpregnant endometrium and placental tissue (250 and 232 Pa, respectively). These findings suggest that it is the presence of invading EVT that is driving the increase in stiffness in decidua basalis. The stiffness of Matrigel® was found to be 331 Pa, significantly lower than decidua basalis (P < 0.05). LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Tissue stiffness was derived by ex vivo measurements on blocks of fresh tissue in the absence of blood flow. The nonpregnant endometrium samples were obtained from women undergoing treatment for infertility. These may not reflect the stiffness of endometrium from normal fertile women. WIDER IMPLICATIONS OF THE FINDINGS: These results provide direct measurements of tissue stiffness during the window of implantation and first trimester of human pregnancy. They serve as a basis of future studies exploring the impact of mechanics on embryo implantation and development of the placenta. The findings provide important baseline data to inform matrix stiffness requirements when developing in vitro models of trophoblast stem cell development and migration that more closely resemble the decidua in vivo. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Centre for Trophoblast Research, the Wellcome Trust (090108/Z/09/Z, 085992/Z/08/Z), the Medical Research Council (MR/P001092/1), the European Research Council (772426), an Engineering and Physical Sciences Research Council Doctoral Training Award (1354760), a UK Medical Research Council and Sackler Foundation Doctoral Training Grant (RG70550) and a Wellcome Trust Doctoral Studentship (215226/Z/19/Z).


Subject(s)
Blastocyst/physiology , Decidua/physiology , Embryo Implantation/physiology , Endometrium/physiology , Placenta/physiology , Cell Movement/physiology , Collagen/chemistry , Decidua/diagnostic imaging , Decidua/ultrastructure , Drug Combinations , Elastic Modulus , Elasticity Imaging Techniques , Endometrium/diagnostic imaging , Endometrium/ultrastructure , Extracellular Matrix/chemistry , Extracellular Matrix/physiology , Female , Humans , Laminin/chemistry , Microscopy, Atomic Force , Placenta/diagnostic imaging , Placenta/ultrastructure , Placentation/physiology , Pregnancy , Pregnancy Trimester, First/physiology , Proteoglycans/chemistry
18.
J Hepatol ; 71(1): 130-142, 2019 07.
Article in English | MEDLINE | ID: mdl-30878582

ABSTRACT

BACKGROUND & AIMS: In vitro, cell function can be potently regulated by the mechanical properties of cells and of their microenvironment. Cells measure these features by developing forces via their actomyosin cytoskeleton, and respond accordingly by regulating intracellular pathways, including the transcriptional coactivators YAP/TAZ. Whether mechanical cues are relevant for in vivo regulation of adult organ homeostasis, and whether this occurs through YAP/TAZ, remains largely unaddressed. METHODS: We developed Capzb conditional knockout mice and obtained primary fibroblasts to characterize the role of CAPZ in vitro. In vivo functional analyses were carried out by inducing Capzb inactivation in adult hepatocytes, manipulating YAP/Hippo activity by hydrodynamic tail vein injections, and treating mice with the ROCK inhibitor, fasudil. RESULTS: We found that the F-actin capping protein CAPZ restrains actomyosin contractility: Capzb inactivation alters stress fiber and focal adhesion dynamics leading to enhanced myosin activity, increased traction forces, and increased liver stiffness. In vitro, this rescues YAP from inhibition by a small cellular geometry; in vivo, it induces YAP activation in parallel to the Hippo pathway, causing extensive hepatocyte proliferation and leading to striking organ overgrowth. Moreover, Capzb is required for the maintenance of the differentiated hepatocyte state, for metabolic zonation, and for gluconeogenesis. In keeping with changes in tissue mechanics, inhibition of the contractility regulator ROCK, or deletion of the Yap1 mechanotransducer, reverse the phenotypes emerging in Capzb-null livers. CONCLUSIONS: These results indicate a previously unsuspected role for CAPZ in tuning the mechanical properties of cells and tissues, which is required in hepatocytes for the maintenance of the differentiated state and to regulate organ size. More generally, it indicates for the first time that mechanotransduction has a physiological role in maintaining liver homeostasis in mammals. LAY SUMMARY: The mechanical properties of cells and tissues (i.e. whether they are soft or stiff) are thought to be important regulators of cell behavior. Herein, we found that inactivation of the protein CAPZ alters the mechanical properties of cells and liver tissues, leading to YAP hyperactivation. In turn, this profoundly alters liver physiology, causing organ overgrowth, defects in liver cell differentiation and metabolism. These results reveal a previously uncharacterized role for mechanical signals in the maintenance of adult liver homeostasis.


Subject(s)
Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , CapZ Actin Capping Protein/metabolism , Cell Cycle Proteins/metabolism , Hepatocytes/physiology , Liver , Mechanotransduction, Cellular/physiology , Protein Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Elasticity , Hippo Signaling Pathway , Humans , Intracellular Signaling Peptides and Proteins/physiology , Liver/growth & development , Liver/metabolism , Liver/physiopathology , Mice , Mice, Knockout , Signal Transduction , YAP-Signaling Proteins
19.
J Neural Eng ; 14(3): 036012, 2017 06.
Article in English | MEDLINE | ID: mdl-28272027

ABSTRACT

OBJECTIVE: High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. APPROACH: Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. MAIN RESULTS: The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. SIGNIFICANCE: This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an attractive tool that may be implemented for general tissue engineering and neuroscience research.


Subject(s)
Biocompatible Materials/pharmacology , Cell Survival/drug effects , Electrodes , Gold/chemistry , Gold/pharmacology , Platinum/pharmacology , Tissue Array Analysis/instrumentation , Alloys/chemical synthesis , Alloys/pharmacology , Aluminum Oxide/chemistry , Amiodarone/analogs & derivatives , Animals , Biocompatible Materials/chemical synthesis , Electric Impedance , Equipment Design , Equipment Failure Analysis , Materials Testing , PC12 Cells , Platinum/chemistry , Rats , Reproducibility of Results , Sensitivity and Specificity
20.
Prog Neurobiol ; 142: 1-22, 2016 07.
Article in English | MEDLINE | ID: mdl-27107796

ABSTRACT

Research and treatment in the nervous system is challenged by many physiological barriers posing a major hurdle for neurologists. The CNS is protected by a formidable blood brain barrier (BBB) which limits surgical, therapeutic and diagnostic interventions. The hostile environment created by reactive astrocytes in the CNS along with the limited regeneration capacity of the PNS makes functional recovery after tissue damage difficult and inefficient. Nanomaterials have the unique ability to interface with neural tissue in the nano-scale and are capable of influencing the function of a single neuron. The ability of nanoparticles to transcend the BBB through surface modifications has been exploited in various neuro-imaging techniques and for targeted drug delivery. The tunable topography of nanofibers provides accurate spatio-temporal guidance to regenerating axons. This review is an attempt to comprehend the progress in understanding the obstacles posed by the complex physiology of the nervous system and the innovations in design and fabrication of advanced nanomaterials drawing inspiration from natural phenomenon. We also discuss the development of nanomaterials for use in Neuro-diagnostics, Neuro-therapy and the fabrication of advanced nano-devices for use in opto-electronic and ultrasensitive electrophysiological applications. The energy efficient and parallel computing ability of the human brain has inspired the design of advanced nanotechnology based computational systems. However, extensive use of nanomaterials in neuroscience also raises serious toxicity issues as well as ethical concerns regarding nano implants in the brain. In conclusion we summarize these challenges and provide an insight into the huge potential of nanotechnology platforms in neuroscience.


Subject(s)
Biomimetic Materials , Biomimetics/instrumentation , Nanostructures , Nanotechnology , Neurology/instrumentation , Neurosciences/instrumentation , Animals , Biomimetics/methods , Humans , Nervous System Diseases/diagnostic imaging , Nervous System Diseases/physiopathology , Nervous System Diseases/therapy , Nervous System Physiological Phenomena , Neurology/methods , Neurosciences/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...