Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Orthop Trauma ; 16: 249-256, 2021 May.
Article in English | MEDLINE | ID: mdl-33717962

ABSTRACT

BACKGROUND: Virtual Reality (VR) simulators are playing an increasingly prominent role in orthopaedic training and education. Face-validity - the degree to which reality is accurately represented - underpins the value of a VR simulator as a learning tool for trainees. Despite the importance of tactile feedback in arthroscopy, there is a paucity for evidence regarding the role of haptics in VR arthroscopy simulator realism. PURPOSE: To assess the difference in face validity between two high fidelity VR simulators employing passive and active haptic feedback technology respectively. METHOD: 38 participants were recruited and divided into intermediate and expert groups based on orthopaedic training grade. Each participant completed a 12-point diagnostic knee arthroscopy VR module using the active haptic Simbionix ARTHRO Mentor and passive haptic VirtaMed ArthroS simulators. Subsequently, each participant completed a validated simulator face validity questionnaire. RESULTS: The ARTHRO Mentor active haptic system failed to achieve face validity with mean scores for external appearance (6.61), intra-articular appearance (4.78) and instrumentation (4.36) falling below the acceptable threshold (≥7.0). The ArthroS passive haptic simulator demonstrated satisfactory scores in all domains: external appearance (8.42), intra-articular appearance (7.65), instrumentation (7.21) and was significantly (p < 0.001) more realistic than ARTHRO Mentor for all metrics. 61% of participants gave scores ≥7.0 for questions pertaining to haptic feedback realism from intra-articular structures such as menisci and ACL/PCL for the ArthroS vs. 12% for ARTHRO Mentor. There was no difference in face-validity perception between intermediate and expert groups for either simulator (p > 0.05). CONCLUSION: Current active haptic technology which employs motors to simulate tactile feedback fails to demonstrate sufficient face-validity or match the sophistication of passive haptic systems in high fidelity arthroscopy simulators. Textured rubber phantoms that mirror the anatomy and haptic properties of the knee joint provide a significantly more realistic training experience for both intermediate and expert arthroscopists.

SELECTION OF CITATIONS
SEARCH DETAIL
...