Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 9(7)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37504747

ABSTRACT

Entomopathogenic fungi are promising as an environmentally benign alternative to chemical pesticides for mosquito control. The current study investigated the virulence of Metarhizium anisopliae blastospores against Aedes aegypti under both laboratory and field conditions. Virulence bioassays of conidia and blastospores were conducted in the laboratory, while field simulation bioassays were conducted under two conditions: totally shaded (TS) or partially shaded (PS). In the first bioassay (zero h), the larvae were added to the cups shortly after the preparation of the blastospores, and in the subsequent assays, larvae were added to the cups 3, 6, 9, and 12 days later. The survival of the larvae exposed to blastospores in the laboratory was zero on day two, as was the case for the larvae exposed to conidia on the sixth day. Under TS conditions, zero survival was seen on the third day of the bioassay. Under PS conditions, low survival rates were recorded on day 7. For the persistence bioassay under PS conditions, low survival rates were also observed. Metarhizium anisopliae blastospores were more virulent to Ae. aegypti larvae than conidia in the laboratory. Blastospores remained virulent under field simulation conditions. However, virulence rapidly declined from the third day of field bioassays. Formulating blastospores in vegetable oil could protect these propagules when applied under adverse conditions. This is the first time that blastospores have been tested against mosquito larvae under simulated field conditions, and the current study could be the basis for the development of a new biological control agent.

2.
Pathogens ; 12(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36839602

ABSTRACT

The maintenance of the symbiosis between leaf-cutting ants and their mutualistic fungus Leucoagaricus gongylophorus Singer (Moller) is vital for the survival of both species. The specialist fungal parasite Escovopsis weberi Muchovej & Della Lucia is a threat to this symbiosis, causing severe damage to the fungal garden. Mycelial pellets are resistant fungal structures that can be produced under laboratory conditions. These structures were studied for use in biological pest control, but the production of mycelial pellets has not previously been documented in Escovopsis. One of the aims of this study was to induce Escovopsis weberi to produce mycelial pellets and investigate the potential of these pellets for the control of leaf-cutting ants. We compared the pathogenicity of Escovopsis weberi mycelial pellets and conidia against mini-colonies of Acromyrmex subterraneus subterraneus Forel when applied in the form of baits. Worker ants were able to distinguish mycelial pellets from conidia, as baits with mycelial pellets were more attractive to workers than those with conidia, causing a greater negative impact on colony health. All types of baits containing Escovopsis weberi influenced the foraging activity but only treatments with viable fungal propagules resulted in an increase in the quantity of waste material, with a significant negative impact on the fungal garden biomass. The results provided novel information regarding Escovopsis recognition by worker ants and differences between conidia and mycelial pellet dynamics in leaf-cutting ant colonies, with new perspectives for the biological control of these important pests.

3.
J Vector Borne Dis ; 58(4): 346-351, 2021.
Article in English | MEDLINE | ID: mdl-35381824

ABSTRACT

BACKGROUND & OBJECTIVES: Entomopathogenic fungi are being investigated for the biological control of a range of mosquitoes. Metarhizium conidiospores (conidia) effectively kill Aedes aegypti larvae and could be deployed as an alternative to chemical insecticides. Conidial yield and virulence of fungi when cultured on three different types of solid media, was investigated. METHODS: Three culture media were tested: a) Sabouraud dextrose agar (SDA); b) rice flour yeast agar (RYA) and c) rice grains. Conidia produced using these substrates were tested for virulence against Ae. aegypti larvae obtained from field collected eggs. Larvae (2nd - 3rd instar) were exposed to aqueous conidial suspensions and survival monitored over 7 days. Survival analysis was performed using Log-Rank and Kaplan Meier tests, while fungal growth and conidial yields were analyzed using a two-way ANOVA. RESULTS: There were only small differences between growth rates on RYA and SDA; however, ESALQ 818 showed the highest conidial yield on rice. Conidia produced on rice grains were more virulent, rapidly reducing survival rates of mosquito larvae. ESALQ 818 conidia produced on rice grains, RYA and SDA killed 100% of the larvae on the 2nd, 3rd and 4th day of exposure, respectively. IP 46 virulence of was consistently lower than ESALQ 818 for all the media tested. INTERPRETATION & CONCLUSION: The choice of culture media can influence the virulence of fungal conidia to Ae. aegypti larvae, demonstrating the importance of not only selecting the most virulent isolate but also standardizing growth conditions when screening for virulence.


Subject(s)
Aedes , Metarhizium , Animals , Culture Media , Larva , Mosquito Control , Pest Control, Biological , Spores, Fungal , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...