Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 25(7): 7220-7229, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28380847

ABSTRACT

We generate coherent ultraviolet radiation at 313 nm as the third harmonic of an external-cavity diode laser. We use this radiation for laser cooling of trapped beryllium atomic ions and sympathetic cooling of co-trapped beryllium-hydride molecular ions. An LBO crystal in an enhancement cavity generates the second harmonic, and a BBO crystal in a doubly resonant enhancement cavity mixes this second harmonic with the fundamental to produce the third harmonic. Each enhancement cavity is preceded by a tapered amplifier to increase the fundamental light. The 36-mW output power of this all-semiconductor-gain system will enable quantum control of the beryllium ions' motion.

2.
J Chem Phys ; 139(17): 174316, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24206307

ABSTRACT

We report new results on the spectroscopy of the 3 (3)Σ(+) electronic state of (39)K(85)Rb. The observations are based on resonance-enhanced multiphoton ionization of ultracold KRb molecules starting in vibrational levels v'' = 18-23 of the a (3)Σ(+) state and ionized via the intermediate 3 (3)Σ(+) state. The a-state ultracold molecules are formed by photoassociation of ultracold (39)K and (85)Rb atoms to the 3(0(+)) state of KRb followed by spontaneous emission. We discuss the potential applications of this state to future experiments, as a pathway for populating the lowest vibrational levels of the a state as well as the X state.

3.
J Chem Phys ; 138(16): 164302, 2013 Apr 28.
Article in English | MEDLINE | ID: mdl-23635133

ABSTRACT

We report the observation and analysis of the 3 (3)ΠΩ double-minimum electronic excited state of (39)K(85)Rb. The spin-orbit components (0(+), 0(-), 1, and 2) of this state are investigated based on potentials developed from the available ab initio potential curves. We have assigned the vibrational levels v' = 2-11 of the 3 (3)Π1,2 potentials and v' = 2-12 of the 3(3)Π0(+/-) potential. We compare our experimental observations of the 3 (3)ΠΩ state with predictions based on theoretical potentials. The observations are based on resonance enhanced multiphoton ionization of ultracold KRb in vibrational levels v" = 14-25 of the a (3)Σ(+) state. These a-state ultracold molecules are formed by photoassociation of ultracold (39)K and (85)Rb atoms to the 5(1) state of KRb followed by spontaneous emission to the a state.

SELECTION OF CITATIONS
SEARCH DETAIL
...