Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(25): e2212086, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37029715

ABSTRACT

For decades, scanning/transmission electron microscopy (S/TEM) techniques have been employed to analyze shear bands in metallic glasses and understand their formation in order to improve the mechanical properties of metallic glasses. However, due to a lack of direct information in reciprocal space, conventional S/TEM cannot characterize the local strain and atomic structure of amorphous materials, which are key to describe the deformation of glasses. For this work, 4-dimensional-STEM (4D-STEM) is applied to map and directly correlate the local strain and the atomic structure at the nanometer scale in deformed metallic glasses. Residual strain fields are observed with quadrupolar symmetry concentrated at dilated Eshelby inclusions. The strain fields percolate in a vortex-like manner building up the shear band. This provides a new understanding of the formation of shear bands in metallic glass.

2.
Beilstein J Nanotechnol ; 13: 817-827, 2022.
Article in English | MEDLINE | ID: mdl-36105687

ABSTRACT

The interfacial energies between a eutectic Ga-In-Sn liquid alloy and single nanoscopic asperities of SiO x , Au, and PtSi have been determined in the temperature range between room temperature and 90 °C by atomic force spectroscopy. For all asperities used here, we find that the interfacial tension of the eutectic Ga-In-Sn liquid alloy is smaller than its free surface energy by a factor of two (for SiO x ) to eight (for PtSi). Any significant oxide growth upon heating studied was not detected here, and the measured interfacial energies strongly depend on the chemistry of the asperities. We also observe a weak increase of the interfacial energy as a function of the temperature, which can be explained by the reactivity between SiO x and Ga and the occurrence of chemical segregation at the liquid alloy surface.

3.
Molecules ; 27(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35268799

ABSTRACT

This investigation is dedicated to unlocking the hidden potential of discarded cosmetics towards building green sustainable road pavements in the future. It is particularly aiming at exploring waste lipstick (WLS) as a high-quality functional additive for advanced asphalt mix technologies. To fuel this novel innovation, the effect of various WLS doses (e.g., 5, 10, and 15 wt.%) on the performance of base AP-5 asphalt cement was studied in detail. A wide array of cutting-edge analytical lab techniques was employed to inspect in-depth the physicochemical, microstructural, thermo-morphological, and rheological properties of resultant admixtures including: elemental analysis, Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thin-layer chromatography-flame ionization detection (TLC-FID), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), needle penetration, ring and ball softening point, Brookfield viscometer, ductility, and dynamic shear rheometer (DSR) tests. Unlike the unstable response of asphaltenes, the additive/artificial aging treatments increased the fraction of resins the most, and decreased that of aromatics; however, asphaltenes did not impair the saturates portion, according to Iatroscan research. FT-IR scan divulged that the WLS-asphalt interaction was physical rather than chemical. XRD diagnosis not only revealed an obvious correlation between the asphaltenes content and the fresh-binder crystallinity but also revealed the presence of fillers in the WLS, which may generate outstanding technical qualities to bituminous mixes. According to AFM/SEM analyses, the stepwise incorporation of WLS grew the magnitude of the "bee-shaped" microstructures and extended the roughness rate of unaged/aged binders. The prolonged consumption of the high thermal-stable additive caused a remarkable drop in the onset degradation and glass transition temperature of mixtures, thus enhancing their workability and low-temperature performance, according to TGA/DTGA/DSC data. The DSR and empirical rheological experiments demonstrated that the WLS could effectively lower the manufacturing and compaction temperatures of asphalt mixes and impart them with valuable anti-aging/fatigue-cracking assets. In a nutshell, the use of waste lipstick as an asphalt modifier is viable and cost-effective and could attenuate the pollution arisen from the beauty sector, while improving the performance of hot/warm asphalt mixes (HAM/WAM) and extending the service life of roadways.


Subject(s)
Hydrocarbons
4.
Materials (Basel) ; 14(5)2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33671043

ABSTRACT

We investigate the copper-wear-protective effects of graphene and boron nitride in single asperity sliding contact with a stiff diamond-coated atomic force microscopy (AFM)-tip. We find that both graphene and boron nitride retard the onset of wear of copper. The retardment of wear is larger with boron nitride than with graphene, which we explain based on their respective out-of-plane stiffnesses. The wear protective effect of boron nitride comes, however, at a price. The out-of-plane stiffness of two-dimensional materials also determines their friction coefficient in a wear-less friction regime. In this regime, a higher out-of-plane stiffness results in larger friction forces.

5.
Materials (Basel) ; 13(4)2020 Feb 23.
Article in English | MEDLINE | ID: mdl-32102246

ABSTRACT

This article presents a novel potential bio-based rejuvenator derived from waste pig fat (WPF) for use in recycled asphalt applications. To achieve this purpose, the impact of different doses waste pig fat (e.g., 0, 3, 6, and 9 wt.% WPF) on the reclaimed asphalt pavement binder (RAP-B) performance is investigated. The unmodified and WPF-modified asphalts are characterized by means of Fourier-transform infrared spectroscopy (FT-IR), thin-layer chromatography-flame ionization detection (TLC-FID), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Physico-rheological properties of asphalt blends are assessed through Brookfield viscometer, softening point, penetration, and dynamic shear rheometer (DSR) tests. TLC-FID data highlighted that incremental WPF addition into RAP-B restored its original balance maltenes-to-asphaltenes ratio; finding which was supported by FT-IR analysis. SEM disclosed that WPF has a great compatibility with the aged asphalt. AFM observations showed that grease treatment induced a decline in surface roughness (i.e., bee structures) and a rise in friction force (i.e., para-phase dimension) of RAP binder. TGA/DSC studies revealed that the bio-modifier not only possesses an excellent thermal stability but also can substantially enhance the binder low-temperature performance. Empirical and DSR tests demonstrated that WPF improved the low-temperature performance grade of RAP-B, reduced its mixing and compaction temperatures, and noticeably boosted its fatigue cracking resistance. The rejuvenation of aged asphalt employing WPF is feasible and can be an ideal approach to recycle both of RAP and waste pig fats.

6.
RSC Adv ; 9(13): 7285-7291, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-35519986

ABSTRACT

We investigated the role of interfacial water on the atomic-scale tribology of graphite by contact atomic force microscopy. Upon the approach of Au and Pt tips toward graphite in water, the hydration layers on the respective surfaces interact with each other. This results in a discontinuous motion of the metallic tips towards the graphite surface. Snap-in forces measured with Au and Pt tips scale with their respective water adsorption energies. Moreover, we observed significant differences for the atomic-scale friction between the Au and Pt tips and graphite in water. The atomic-scale sliding friction between an Au tip and graphite is characterized by low friction forces (F f < 1 nN in the range of normal force values F n = 1-10 nN) and by a periodic stick-slip that corresponds to the honeycomb structure of graphite. With a Pt tip, the sliding friction on graphite in water is characterized by high friction forces (F f ≈ 5 nN in the range of normal force values F n = 1-10 nN) and by an atomic-scale stick-slip whose characteristic lengths may correspond to an ordered water adsorption layer between platinum and graphite.

7.
J Vis Exp ; (117)2016 11 22.
Article in English | MEDLINE | ID: mdl-27911372

ABSTRACT

In this work, a combination of amplitude-modulated non-contact atomic force microscopy and atomic force spectroscopy is applied for instrumented hardness measurements on an Au(111) surface with atomistic resolution of single plasticity events. A careful experimental procedure is described that includes the force sensor selection, its calibration, the calibration of the cantilever deflection detection system, and the minimization of instrumental drift for accurate and reproducible force-distance measurements. Also, a method for the data analysis is presented that allows the extraction of force-penetration curves from recorded force-distance curves. A typical curve displays a clear elastic deformation regime up to the first plasticity event, or pop-in, with a length in the range of one to two Burger's vectors. Later plasticity events exhibit the same magnitude. The work of plasticity is further extracted from the measurements. Finally, the hardness is determined in combination with the indentation curve using non-contact atomic force microscopy images of the remaining indents.


Subject(s)
Hardness , Microscopy, Atomic Force , Spectrophotometry, Atomic , Calibration , Mechanical Phenomena
8.
Beilstein J Nanotechnol ; 6: 1721-32, 2015.
Article in English | MEDLINE | ID: mdl-26425424

ABSTRACT

We combine non-contact atomic force microscopy (AFM) imaging and AFM indentation in ultra-high vacuum to quantitatively and reproducibly determine the hardness and deformation mechanisms of Pt(111) and a Pt57.5Cu14.7Ni5.3P22.5 metallic glass with unprecedented spatial resolution. Our results on plastic deformation mechanisms of crystalline Pt(111) are consistent with the discrete mechanisms established for larger scales: Plasticity is mediated by dislocation gliding and no rate dependence is observed. For the metallic glass we have discovered that plastic deformation at the nanometer scale is not discrete but continuous and localized around the indenter, and does not exhibit rate dependence. This contrasts with the observation of serrated, rate-dependent flow of metallic glasses at larger scales. Our results reveal a lower size limit for metallic glasses below which shear transformation mechanisms are not activated by indentation. In the case of metallic glass, we conclude that the energy stored in the stressed volume during nanometer-scale indentation is insufficient to account for the interfacial energy of a shear band in the glassy matrix.

9.
Nano Lett ; 14(12): 7145-52, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25375666

ABSTRACT

We study nanoindentation and scratching of graphene-covered Pt(111) surfaces in computer simulations and experiments. We find elastic response at low load, plastic deformation of Pt below the graphene at intermediate load, and eventual rupture of the graphene at high load. Friction remains low in the first two regimes, but jumps to values also found for bare Pt(111) surfaces upon graphene rupture. While graphene substantially enhances the load carrying capacity of the Pt substrate, the substrate's intrinsic hardness and friction are recovered upon graphene rupture.

10.
Langmuir ; 24(3): 635-6, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18171094

ABSTRACT

The evolutional function of ordered interfacial water near solid surfaces was postulated by Szent-Györgyi: "Life actually, may have started with building these water structures." Here we report their tunability with laser light on both hydrophobic and hydrophilic surfaces. On the former, the light caused their depletion--on the latter, an increase in fluidity--as measured by atomic force acoustic microscopy. Interfacial water layers play a key role in cellular recognition. Their tunability promises to revolutionize various fields in biomedical engineering and life sciences.

SELECTION OF CITATIONS
SEARCH DETAIL
...