Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 8(9): 210664, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34527273

ABSTRACT

Radiodonts, stem-group euarthropods that evolved during the Cambrian explosion, were among the largest and most diversified lower palaeozoic predators. These animals were widespread geographically, occupying a variety of ecological niches, from benthic foragers to nektonic suspension feeders and apex predators. Here, we describe the largest Cambrian hurdiid radiodont known so far, Titanokorys gainesi, gen. et sp. nov., from the Burgess Shale (Marble Canyon, Kootenay National Park, British Columbia). Estimated to reach half a metre in length, this new species bears a very large ovoid-shaped central carapace with distinct short posterolateral processes and an anterior spine. Geometric morphometric analyses highlight the high diversity of carapace shapes in hurdiids and show that Titanokorys bridges a morphological gap between forms with long and short carapaces. Carapace shape, however, is prone to homoplasy and shows no consistent relationship with trophic ecology, as demonstrated by new data, including a reappraisal of the poorly known Pahvantia. Despite distinct carapaces, Titanokorys shares similar rake-like appendages for sediment-sifting with Cambroraster, a smaller but much more abundant sympatric hurdiid from the Burgess Shale. The co-occurrence of these two species on the same bedding planes highlights potential competition for benthic resources and the high diversity of large predators sustained by Cambrian communities.

2.
Proc Biol Sci ; 286(1908): 20191079, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31362637

ABSTRACT

Radiodonts, a clade of Cambro-Devonian stem group euarthropods, have classically been regarded as nektonic apex predators. However, many aspects of radiodont morphology and ecology have remained unclear because of the typically fragmentary nature of fossil material. Here, we describe a new hurdiid radiodont based on abundant and exceptionally well-preserved fossils from the Burgess Shale (Marble Canyon area, British Columbia, Canada). Cambroraster falcatus gen. et sp. nov. is characterized by an extra-large horseshoe-shaped head carapace, bearing conspicuous posterolateral spinous processes, and partially covering a short trunk with eight pairs of lateral flaps. Each of the pair of frontal appendages possess five mesially curving rake-like endites equipped with a series of anteriorly directed hooked spines, altogether surrounding the oral cone. This feeding apparatus suggests a micro to macrophagous sediment-sifting feeding ecology. Cambroraster illuminates the evolution of Hurdiidae and evinces the exploitation of the diversifying infauna by these large and specialized nektobenthic carnivores in the aftermath of the Cambrian explosion.


Subject(s)
Arthropods/classification , Biological Evolution , Fossils/anatomy & histology , Predatory Behavior , Animals , Arthropods/anatomy & histology , Arthropods/physiology , British Columbia
3.
Proc Biol Sci ; 286(1894): 20182314, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30963877

ABSTRACT

Agnostids (agnostinids and eodiscinids) are a widespread and biostratigraphically important group of Cambro-Ordovician euarthropods whose evolutionary affinities have been highly controversial. Their dumbbell-shaped calcified tergum was traditionally suggested to unite them with trilobites, but agnostinids have alternatively been interpreted as stem-crustaceans, based on Orsten larval material from the Cambrian of Sweden. We describe exceptionally preserved soft tissues from mature individuals of the agnostinids Peronopsis and Ptychagnostus from the middle Cambrian (Wuliuan Stage) Burgess Shale (Walcott Quarry and Marble Canyon, British Columbia, Canada), facilitating the testing of alternative hypotheses. The digestive tract includes conspicuous ramifying cephalic diverticulae. The cephalon carries one pair of elongate spinous antennules projecting to the front, two pairs of appendages with distally setose, oar-like exopods, and three pairs of presumably biramous appendages with endopods sporting club-shaped exites. The trunk bears five appendage pairs, at least the first two of which are similar to the posteriormost cephalic pairs. The combined evidence supports a nektobenthic and detritivorous lifestyle for agnostinids. A head with six appendiferous segments contrasts strikingly with the four known in trilobites and five typical of mandibulates. Agnostinids are retrieved as the sister group to polymeroid trilobites in our phylogeny, implying that crustacean-like morphologies evolved homoplastically. This result highlights the variability in segmental composition of the artiopodan head. Finally, our study emphasizes the continued role of Burgess Shale-type fossils in resolving the affinities of problematic biomineralizing taxa.


Subject(s)
Arthropods/anatomy & histology , Arthropods/classification , Biological Evolution , Fossils/anatomy & histology , Animals , Arthropods/physiology , British Columbia , Life History Traits , Phylogeny
4.
Integr Comp Biol ; 58(4): 703-711, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29697774

ABSTRACT

Anomalocaris canadensis, a soft-bodied stem-group arthropod from the Burgess Shale, is considered the largest predator of the Cambrian period. Thanks to a series of lateral flexible lobes along its dorso-ventrally compressed body, it is generally regarded as an efficient swimmer, well-adapted to its predatory lifestyle. Previous theoretical hydrodynamic simulations have suggested a possible optimum in swimming performance when the lateral lobes performed as a single undulatory lateral fin, comparable to the pectoral fins in skates and rays. However, the role of the unusual fan-like tail of Anomalocaris has not been previously explored. Swimming efficiency and maneuverability deduced from direct hydrodynamic analysis are here studied in a towing tank facility using a three-vane physical model designed as an abstraction of the tail fin. Through direct force measurements, it was found that the model exhibited a region of steady-state lift and drag enhancement at angles of attack greater than 25° when compared with a triangular-shaped reference model. This would suggest that the resultant normal force on the tail fin of Anomalocaris made it well-suited for turning maneuvers, giving it the ability to turn quickly and through small radii of curvature. These results are consistent with an active predatory lifestyle, although detailed kinematic studies integrating the full organism, including the lateral lobes, would be required to test the effect of the tail fin on overall swimming performance. This study also highlights a possible example of evolutionary convergence between the tails of Anomalocaris and birds, which, in both cases, are well-adapted to efficient turning maneuvers.


Subject(s)
Animal Fins/physiology , Arthropods/physiology , Biological Evolution , Animals , Biomechanical Phenomena , Extinction, Biological , Swimming/physiology , Tail/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...