Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Immunooncol Technol ; 20: 100408, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38192613

ABSTRACT

Background: Despite having revolutionized the treatment paradigm for advanced melanoma, not all patients benefit from immune checkpoint inhibitor therapy. To date, there are no predictive biomarkers for response or the occurrence of immune-related adverse events (irAEs) to programmed cell death protein 1 (PD-1) inhibitors. Our aim was to investigate the predictive and prognostic role of single nucleotide variants (SNVs) of genes involved in the PD-1 axis. Methods: We analysed, in metastatic melanoma patients treated with nivolumab or pembrolizumab, five PD-1 SNVs, namely PD1.3 G>A (rs11568821), PD1.5 C>T (rs2227981), PD1.6 G>A (rs10204525), PD1.7 T>C(rs7421861), PD1.10 C>G (rs5582977) and three programmed death-ligand 1 (PD-L1) SNVs: +8293 C>A (rs2890658), PD-L1 C>T (rs2297136) and PD-L1 G>C (rs4143815). Association of SNV genotypic frequencies with best overall response to PD-1 inhibitors and development of irAEs were estimated through a modified Poisson regression. A Cox regression modelling approach was applied to evaluate the SNV association with OS. Results: A total of 125 patients with advanced melanoma were included in the analysis. A reduction in irAEs risk was observed in patients carrying the PD-L1 +8293 C/A genotype compared with those carrying the C/C genotype (risk ratio = 0.45; 95% CL 0.22-0.93; P = 0.031). A trend for a reduction in irAEs was also observed with the PD1.5 T allele (risk ratio = 0.70, 95% confidence limits 0.48-1.01 versus C allele). None of the SNVs was associated with response to therapy. Finally, a survival benefit was observed in patients harbouring the PD1.7 C/C genotype (hazard ratio = 0.37; 95% confidence limits 0.14-0.96; P = 0.028) in the homozygous model. Conclusions: Our study showed that PD-1.5 and PD-L1 +8293 SNVs may play a role as a predictive biomarker of development of irAEs to PD-1 inhibitors. PD1.7 SNV may also be associated with a reduction of the risk of death, although further translational research is needed to confirm these results.

2.
Curr Drug Targets ; 10(10): 1021-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19663770

ABSTRACT

Novel anti-vasculature strategies that are emerging for the treatment of cancer and for the inhibition of angiogenesis may be a promising new tool for the adjuvant therapy of malignant tumours. Over the last fifteen years, several reports have been published concerning the relationship between tumour progression and angiogenesis in experimental models of neuroblastoma in vitro and in vivo. Moreover, a high vascular index in neuroblastoma correlates with poor prognosis, suggesting dependence of aggressive tumour growth on active angiogenesis. Here, we present an overview of the most recent advances in anti-vasculature therapy of neuroblastoma, and describe some preclinical results as well as future perspectives.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Neuroblastoma/drug therapy , Angiogenesis Inhibitors/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Disease Progression , Drug Delivery Systems , Humans , Neovascularization, Pathologic/drug therapy , Neuroblastoma/blood supply , Neuroblastoma/pathology , Prognosis
3.
Drug Deliv ; 16(7): 389-98, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19624248

ABSTRACT

This study relates to the preparation of a series of amphiphilic dextrins and their evaluation as complexing agents for anti-tumor hydrophobic drugs such as fenretinide, paclitaxel, etoposide, and camptothecin. The amphiphilic dextrins were obtained by conjugation of low molecular weight dextrin (average molecular weight 1670, average polymerization degree 9.33 glucose monomer) with hydrocarbon chains at substitution degree of about 0.1 mole hydrocarbon chain per mole of glucose monomer, as confirmed by 1H-NMR spectra. The conjugates were highly soluble in water and dissolved with formation of nano-aggregates endowed with hydrophobic inner cores able to host hydrophobic drugs by complexation. Complexation raised hydrophobic drugs aqueous solubility; the best results were obtained with fenretinide. Solid complexes with fenretinide were prepared by using three different approaches: the kneading method, the co-solubilisation method, and the co-precipitation method. Kneading method provided the complexes endowed with the best functional properties. Thermogravimetric analysis on solid samples suggested a notable thermal stability up to 300 degrees C for both the conjugated dextrins and the solid complexes. In differential scanning calorimetry profiles no significant differences were observed among amphiphilic dextrins and complexed drug, indicating that the guest molecule exists in an amorphous state in the solid matrices. Particle size analysis confirmed the dimensional suitability of the complexes for parenteral administration. Moreover, sustained drug release, in vitro, has been observed from all the complexes analyzed. Regarding the biological effects, the cytotoxicity of complexed fenretinide towards HTLA-230 neuroblastoma cell line was always higher than the free drug, suggesting that complexation increased drug bioavailability. These findings, taken together, indicated that these biodegradable, self-assembling dextrin conjugates may be regarded as new potential complexing agents for hydrophobic drugs and, in particular, for fenretinide, to increase drug solubility, bioavailability, and thus therapeutic efficacy.


Subject(s)
Antineoplastic Agents/chemistry , Dextrins/chemistry , Fenretinide/chemistry , Hydrophobic and Hydrophilic Interactions , Surface-Active Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Dextrins/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Fenretinide/pharmacology , Humans , Solubility , Surface-Active Agents/pharmacology
4.
Drug Deliv ; 16(4): 189-95, 2009 May.
Article in English | MEDLINE | ID: mdl-19241235

ABSTRACT

All-trans-retinoic acid (ATRA) is now included in many antitumor therapeutic schemes for the treatment of acute promyelocytic leukemia, Kaposi's sarcoma, head and neck squamous cell carcinoma, ovarian carcinoma, bladder cancer, and neuroblastoma. Unfortunately, its poor aqueous solubility hampers its parenteral formulation, whereas oral administration of ATRA is associated with progressively diminishing drug levels in plasma, which is related to induction of retinoic acid-binding proteins and increased drug catabolism by cytochrome P450-mediated reactions. An ATRA formulation, obtained by complexation of the drug into polymeric micelles, might be suitable for parenteral administration overcoming these unwanted effects. To this purpose, amphiphilic polymers were prepared by polyvinylalcohol (PVA) partial esterification with nicotinoyl moieties and their functional properties evaluated with regard to ATRA complexation. The physicochemical characteristics of the polymers and the complexes were analyzed by 1H-NMR, Dynamic Light Scattering (DLS), Capillary Electophoresis (CE), and were correlated with the complex ability to improve the drug solubilization and release the free drug in an aqueous environment. Subsequently, the best complex, providing the highest ATRA solubilization and release, was evaluated in vitro to test its cytotoxicity towards neuroblastoma cell lines. The PVA substitution degree calculated from 1H-NMR was found to be 5.0%, 8.2%, 15.3% (nicotinoyl moiety:PVA monomer molar ratio), while capillary electrophoresis analysis on the complexes revealed that the drug loadings were 0.95%, 1.20%, 4.76% (ATRA:polymer w:w) for PVA substitution degrees of 5.0%, 8.2%, and 15.3%, respectively. Complexation strongly increased ATRA aqueous solubility, which reached 1.20 +/- 0.25 mg/mL. The DLS measurements of the polymers and the complexes in aqueous solutions revealed mean sizes always below 400 nm, low polydispersity (min 0.202 +/- 0.013, max 0.450 +/- 0.032), and size almost unaffected by concentration. Drug fractional release did not exceed 8% after 48 h. The cytotoxicity studies against neuroblastoma cell lines outlined a significant growth inhibition effect of complexed ATRA with respect to free ATRA. These data suggest that the systems analyzed may be suitable carriers for parenteral administration of ATRA and other hydrophobic antitumor drugs, where the carriers are required to improve drug aqueous solubility and delay drug release almost after their accumulation in solid tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , Cell Proliferation/drug effects , Infusions, Parenteral , Neuroblastoma/therapy , Tretinoin/administration & dosage , Chemistry, Pharmaceutical , Drug Administration Routes , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Esters/chemistry , Humans , Micelles , Neuroblastoma/pathology , Polyvinyl Alcohol/chemistry , Solubility , Tretinoin/chemistry , Tumor Cells, Cultured
5.
Biomacromolecules ; 8(10): 3258-62, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17883277

ABSTRACT

N-(4-hydroxyphenyl)retinamide (fenretinide, 4-HPR) has been shown to be active toward many tumors without appreciable side effects. However its in vitro activity does not match a correspondent efficacy in vivo. The main reason is that the drug's hydrophobicity hinders its bioavailability in the body fluids. Even if the drug is previously dissolved in organic solvents, such as ethanol or DMSO, the subsequent dilution in body fluids trigger its precipitation in fine aggregates characterized by very low dissolution efficiency, never reaching amounts suitable for therapeutic response. To date no intravenous formulation of 4-HPR exists on the market. The 4-HPR linkage to a hydrophilic polymer by a covalent bond easily hydrolyzable in aqueous environment is expected to increase the drug's aqueous solubility, providing the free drug after hydrolysis of the covalent bond. This may be a useful tool for the preparation of aqueous intravenous formulations of 4-HPR. For this purpose, we linked 4-HPR to polyvinylalcohol (PVA) by a carbonate bond at different drug/hydroxy vinyl monomer molar ratios. We demonstrated that conjugation increased 4-HPR aqueous solubility and strongly inhibited neuroblastoma cell proliferation. In addition, in an in vivo neuroblastoma metastatic model, we obtained a significant antitumor effect as a consequence of the improved drug bioavailability.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems , Fenretinide/administration & dosage , Fenretinide/chemistry , Polyvinyl Alcohol/chemistry , Animals , Biological Availability , Cell Line, Tumor , Cell Proliferation , Dimethyl Sulfoxide/chemistry , Humans , Infusions, Intravenous , Mice , Mice, Nude , Models, Chemical , Neoplasm Metastasis , Neuroblastoma/metabolism , Solubility
6.
Drug Deliv ; 14(4): 209-17, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17497353

ABSTRACT

Oleyl alcohol was complexed with new amphiphilic polyvinylalcohol derivatives with the aim of increasing its aqueous solubility, thus improving bioavailability and favoring its antitumor activity. Water-soluble amphiphilic polymers were prepared by polyvinyl alcohol (PVA) substitution with oleyl chains through a succinyl spacer at 2% and 3% substitution degree. The complexes were obtained by spray-drying hydroalcoholic solutions of the substituted polymers and free oleyl alcohol at different weight ratios (3:1; 5:1; 10:1 w/w). The main physicochemical characteristics of the complexes were analyzed and correlated to the cytotoxic activity of oleyl alcohol toward tumor cell lines. The complexes strongly increased the aqueous solubility of oleyl alcohol and provided oleyl alcohol release in the presence of extractive conditions (simulating in vivo absorption). The complexes obtained by 10:1 polymer:fatty alcohol weight ratio offered higher release rates than the 5:1 and 3:1 ratios, respectively. Complexation also increased oleyl alcohol cytotoxicity toward tumor cells due to increased availability of the active molecule in the aqueous phase. Pure polymers were found to be biocompatible and no toxic effect was detected up to the highest concentration used in the present study (500 mu g/ml). The complexation of oleyl alcohol with the polymers analyzed here efficiently increased the availability of the fatty alcohol in aqueous environment. The enhanced cytotoxicity toward tumor cells of the complexed oleyl alcohol and the polymer biocompatibility make these amphiphilic PVA derivatives interesting candidates for soluble pharmaceutical formulations containing hydrophobic drugs whose therapeutic potential is often underestimated due to unsuitable levels of their aqueous solubilization.


Subject(s)
Antineoplastic Agents/pharmacology , Fatty Alcohols/pharmacology , Polyvinyl Alcohol/chemistry , Antineoplastic Agents/chemistry , Calorimetry, Differential Scanning , Cell Line, Tumor , Cell Survival/drug effects , Chemistry, Pharmaceutical , Dose-Response Relationship, Drug , Fatty Alcohols/chemistry , Humans , Light , Microscopy, Electron, Scanning , Pharmaceutical Solutions , Scattering, Radiation , Solubility , Solvents/chemistry , Surface-Active Agents/chemistry , Time Factors , Water/chemistry
7.
Biomacromolecules ; 7(11): 3157-63, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17096546

ABSTRACT

Poly(vinyl alcohol) (PVA) substituted with oleyl chains and tetraethyleneglycol monoethyl ether chains (TEGMEE) at 1.5% and 1% degrees of substitution respectively (mol of substituent to mol of hydroxyvinyl monomer) has previously been shown to self-assemble in water, providing aggregates selectively cytotoxic toward tumor cells vs normal cells. These polymers have also been shown to increase the long-term survival of nude mice injected with both human and murine neuroblastoma cell lines. In the present work, we changed the substitution degree of the oleyl chains on the poly(vinyl alcohol) backbone and maintained constant at 1% the degree of TEGMEE substitution. We evaluated the main physicochemical characteristics of the final polymers, their cytotoxicity toward tumor cells, and their complexing ability for hydrophobic molecules. The aim was to investigate the possibility of improving intrinsic antitumor efficacy of the polymer by changing the degree of oleyl chain substitution and further increase activity by complexation with antitumor drugs. The polymers were prepared at oleyl chain substitution degrees ranging from 0.5 to 3% (mol of substituent to mol of hydroxyvinyl monomer). The most active was again the 1.5% substituted polymer. It was further characterized by exhibiting the highest complexing ability toward hydrophobic molecules allowing the formation of a complex with fenretinide (HPR). The polymer-HPR complex was stable in aqueous environment and released the free drug prevalently in the presence of fluid hydrophobic phases. It was cytotoxic toward tumor cells with minimal activity toward normal cells. Antitumor activity exceeded that of the separate complex components resulting from the concomitant effect of the polymer and the HPR solubilized by complexation.


Subject(s)
Antineoplastic Agents/chemistry , Fenretinide/chemistry , Polyvinyl Alcohol/chemistry , Animals , Antineoplastic Agents/pharmacology , Cell Survival/drug effects , Dose-Response Relationship, Drug , Electron Spin Resonance Spectroscopy , Fenretinide/pharmacology , Humans , Mice , Mice, Nude , Tumor Cells, Cultured
8.
Biomacromolecules ; 6(5): 2875-80, 2005.
Article in English | MEDLINE | ID: mdl-16153130

ABSTRACT

A series of poly(vinyl alcohol) amphiphilic derivatives have been prepared to obtain polymeric aggregates in aqueous phase holding thermodynamic instability. The aim was to evaluate their ability to interact with tumor cells eliciting selective cytotoxicity. The poly(vinyl alcohol) derivatives were prepared by partial substitution of poly(vinyl alcohol) (MW 10 kDa) with both oleyl chains and poly(ethylene glycol) monoethyl ethers (PEGMEE) of different molecular weights. The substitution degree was 1.5% for the oleyl chains and 1% for the PEGMEE chains (moles of substituent per 100 mol of hydroxyvinyl monomer). The polyvinyl derivatives obtained easily dissolved in water. Dynamic and static light scattering measurements on the polymer aqueous solutions indicated the formation of polymeric aggregates characterized by low polydispersity (0.232-0.299) and mean size (218-382 nm) in the range suitable for intravenous administration. Moreover, they were characterized by different packing densities and thermodynamic instabilities driving the polymers to interact with hydrophobic membranes. Among the analyzed polymers, the poly(vinyl alcohol)-co-oleylvinyl ether substituted with triethylene glycol monoethyl ether (P10(4)) provided in solution the highest affinity for hydrophobic membranes. P10(4), moreover, was the most cytotoxic toward the tumor cell lines analyzed (neuroblastoma: SH-SY5Y, IMR-32, HTLA-230. melanoma: MZ2-MEL, RPMI7932.), while it did not appreciably alter the viability of the normal resting lymphocytes. The peculiar behavior of the P10(4) aggregates has been correlated to their high thermodynamic instability in solution due to the high packing density that triggers the polymeric aggregates to interact with hydrophobic membranes such as the tumor cell membranes, thus eliciting cytotoxicity.


Subject(s)
Biopolymers/chemistry , Neoplasms/drug therapy , Polyethylene Glycols/chemistry , Polyvinyl Alcohol/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Biocompatible Materials/chemistry , Calorimetry, Differential Scanning , Cell Line, Tumor , Cell Membrane/metabolism , Cell Survival , Drug Carriers/chemistry , Ethers/chemistry , Humans , Light , Lymphocytes/metabolism , Models, Chemical , Molecular Weight , Polymers/chemistry , Scattering, Radiation , Solubility , Temperature , Thermodynamics
9.
Drug Deliv ; 12(1): 15-20, 2005.
Article in English | MEDLINE | ID: mdl-15801716

ABSTRACT

Polyvinylalcohol, partially substituted with lipophilic acyl chains, generates polymeric micelles in aqueous phase, containing a hydrophobic core able to encapsulate lipophilic drugs. Two types of polymers were obtained by conjugation of polyvinylalcohol with oleoyl or linoleoyl chains as pendant groups. The polymers, at a substitution degree of approximately 1%, are soluble in water and form polymeric micelles whose size increases with polymer concentration. Doxorubicin was hydrophobized, by linking an oleoyl chain via amide bond, to make the drug more similar to the substituted polymers and promote its encapsulation into the inner core of the micelles. The properties of the drug-polymer systems were evaluated in solution by dynamic light scattering technique and correlated to the physicochemical characteristics of the drug and the substituted polymers. Solubilization tests revealed that the similarity of the chain, in both the polymer and the drug, promotes better drug encapsulation in the oleoyl than linoleoyl derivative. The drug-polymer systems are stable in phosphate buffer saline (pH 7.4) at 37 degrees C, and the release of the drug is activated by the presence of the proteolytic enzyme pronase-E. The enzyme activated drug release and the size of the polymeric micelles, compatible with the pore dimensions of the tumor vessels, make these systems interesting for targeting lipophilic drugs to solid tumors, where the proteolytic enzyme concentration strongly raises with respect to the other body compartments.


Subject(s)
Doxorubicin/administration & dosage , Polyvinyl Alcohol/administration & dosage , Doxorubicin/chemistry , Micelles
10.
J Control Release ; 103(2): 369-80, 2005 Mar 21.
Article in English | MEDLINE | ID: mdl-15763620

ABSTRACT

All-trans-retinoic acid (ATRA) is now included in many antitumor therapeutic schemes for the treatment of acute promyelocytic leukaemia, Kaposi's sarcoma, head and neck squamous cell carcinoma, ovarian carcinoma, bladder cancer and neuroblastoma. Unfortunately its poor aqueous solubility hampers its parenteral formulation. To date, there is no parenteral formulation of ATRA commercially available and oral administration of ATRA is associated with progressively diminishing ATRA levels in plasma, which is related to induction of retinoic acid-binding protein and increased drug catabolism by cytochrome P-450-mediated reaction. An ATRA formulation, obtained by complexation of the drug into polymeric micelles, might be suitable for parenteral administration overcoming these unwanted effects. To this purpose we prepared an amphiphilic polymer by polyvinylalcohol (PVA) substitution with oleyl amine at 1.5% substitution degree (mol substituent per 100 mol hydroxyvinylmonomer) and evaluated its functional properties with regard to ATRA complexation. The substituted polymer displayed ability to interact with ATRA both in aqueous solution and in the solid state following spray-drying of drug-polymer hydro-alcoholic solutions. The spray-dried complexes rapidly dissolved in water providing high levels of ATRA solubilization as a function of the drug-polymer weight ratio. The complexes characterized by 1:5 drug-polymer weight ratio provided higher levels of ATRA solubilization than 1:3 and 1:10 drug-polymer weight ratios respectively. Pre-formed polymeric micelles in water equilibrated in the presence of excess solid ATRA provided the lowest levels of solubilization. The drug release from the complexes was very slow in PBS, indicating their suitability in antitumor drug targeting where a fundamental requirement is stability towards drug release for at least 24 h, corresponding to the average circulation time period of macromolecular carriers. The cytotoxicity studies against neuroblastoma cell lines outlined increased cytotoxicity of complexed ATRA with respect to free ATRA, likely due to the increased bioavailability of the hydrophobic drug from the complex. We conclude that ATRA entrapped into self-assembling polymer micelles may be a useful parenteral ATRA formulation overcoming the unwanted pharmacological mechanism that lead to acquired retinoid resistance.


Subject(s)
Antineoplastic Agents/chemistry , Drug Compounding , Polyvinyl Alcohol/chemistry , Tretinoin/chemistry , Amines/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Stability , Humans , Micelles , Particle Size , Solubility , Tretinoin/pharmacology
11.
Eur J Immunol ; 31(6): 1656-65, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11385609

ABSTRACT

Interleukin-2 (IL-2)-activated polyclonal or clonal NK cells lysed autologous antigen presenting cells (APC) through the engagement of the natural cytotoxicity receptors (NCR) NKp30 and NKp46. NK cell-mediated cytolysis of APC correlated with the surface density of these NCR. Indeed, NK cell clones bearing low amounts of NKp30 and NKp46 did not lyse autologous APC, whereas NK cell clones with bright expression of these NCR efficiently killed autologous APC. Upon masking of NKp30 or NKp46 by specific monoclonal antibodies a strong reduction (by 50%) of APC lysis could be detected and the complete inhibition was achieved by the simultaneous masking of these NCR. Interestingly, NK cell-mediated APC lysis was impaired by the phosphatidylinositol 3-kinase (PI-3 K) inhibitors LY294002 or wortmannin. Similarly, these drugs strongly reduced NK cell activation triggered by NKp30 or NKp46 in a re-directed killing assay as well as the activation of Akt/PKB, substrate of PI-3 K, induced by the engagement of these receptors. Altogether, these findings strongly suggest that NCR are responsible for the killing of autologous APC through the activation of PI-3 K.


Subject(s)
Antigen-Presenting Cells/immunology , Cytotoxicity, Immunologic/immunology , Killer Cells, Natural/immunology , Phosphatidylinositol 3-Kinases/immunology , Receptors, Immunologic/immunology , Antigens, Surface/biosynthesis , Cells, Cultured , Histocompatibility Antigens Class I/immunology , Humans , Killer Cells, Natural/cytology , Natural Cytotoxicity Triggering Receptor 1 , Natural Cytotoxicity Triggering Receptor 2 , Natural Cytotoxicity Triggering Receptor 3 , Phosphoinositide-3 Kinase Inhibitors , Receptors, Immunologic/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...