Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chemosphere ; 181: 551-561, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28463730

ABSTRACT

Arsenic (As)-polluted groundwater constitutes a serious problem for peanut plants, as roots can accumulate the metalloid in their edible parts. Characterization of stress responses to As may help to detect potential risks and identify mechanisms of tolerance, being the induction of oxidative stress a key feature. Fifteen-day old peanut plants were treated with arsenate in order to characterize the oxidative stress indexes and antioxidant response of the legume under realistic groundwater doses of the metalloid. Superoxide anion (O2-) and hydrogen peroxide (H2O2) histochemical staining along with the activities of NADPH oxidase, superoxide dismutase (SOD), catalase (CAT) and thiol (glutathione and thioredoxins) metabolism were determined in roots. Results showed that at 20 µM H2AsO4-, peanut growth was reduced and the root architecture was altered. O2- and H2O2 accumulated at the root epidermis, while lipid peroxidation, NADPH oxidase, SOD, CAT and glutathione S-transferase (GST) activities augmented. These variables increased with increasing As concentration (100 µM) while glutathione reductase (GR) and glutathione peroxidase/peroxiredoxin (GPX/PRX) were significantly decreased. These findings demonstrated that the metalloid induced physiological and biochemical alterations, being the NADPH oxidase enzyme implicated in the oxidative burst. Additionally, the strong induction of GST activity, even at the lowest H2AsO4- doses studied, can be exploited as suitable biomarker of As toxicity in peanut plants, which may help to detect risks of As accumulation and select tolerant cultivars.


Subject(s)
Antioxidants/metabolism , Arachis/drug effects , Arsenates/toxicity , Glutathione Transferase/metabolism , Plant Roots/drug effects , Antioxidants/analysis , Arachis/enzymology , Arachis/growth & development , Arsenates/analysis , Arsenic/analysis , Arsenic/toxicity , Biomarkers/metabolism , Glutathione Transferase/analysis , Glutathione Transferase/drug effects , Groundwater/chemistry , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Oxidation-Reduction , Oxidative Stress/drug effects , Oxidoreductases/metabolism , Plant Roots/enzymology , Plant Roots/metabolism , Superoxides/analysis
2.
J Environ Manage ; 130: 126-34, 2013 Nov 30.
Article in English | MEDLINE | ID: mdl-24076512

ABSTRACT

Heavy metals in soil are known to affect rhizobia-legume interaction reducing not only rhizobia viability, but also nitrogen fixation. In this work, we have compared the response of the symbiotic interaction established between the peanut (Arachis hypogaea L.) and a sensitive (Bradyrhizobium sp. SEMIA6144) or a tolerant (Bradyrhizobium sp. NLH25) strain to Cd under exposure to this metal. The addition of 10 µM Cd reduced nodulation and nitrogen content in both symbiotic associations, being the interaction established with the sensitive strain more affected than that with the tolerant one. Plants inoculated with the sensitive strain accumulated more Cd than those inoculated with the tolerant strain. Nodules showed an increase in reactive oxygen species (ROS) production when exposed to Cd. The histological structure of the nodules exposed to Cd revealed a deposit of unknown material on the cortex and a significant reduction in the infection zone diameter in both strains, and a greater number of uninfected cells in those nodules occupied by the sensitive strain. In conclusion, Cd negatively impacts on peanut-bradyrhizobia interaction, irrespective of the tolerance of the strains to this metal. However, the inoculation of peanut with Bradyrhizobium sp. NLH25 results in a better symbiotic interaction suggesting that the tolerance observed in this strain could limit Cd accumulation by the plant.


Subject(s)
Arachis/microbiology , Bradyrhizobium/drug effects , Cadmium/toxicity , Arachis/drug effects , Arachis/metabolism , Bradyrhizobium/metabolism , Bradyrhizobium/physiology , Environmental Pollutants/toxicity , Hydrogen Peroxide/metabolism , Lipid Peroxidation , Oxidative Stress , Plant Roots/anatomy & histology , Plant Roots/drug effects , Plant Roots/microbiology , Reactive Oxygen Species/metabolism , Soil Microbiology , Symbiosis/drug effects
3.
Metallomics ; 4(10): 1119-24, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22986748

ABSTRACT

Cadmium (Cd) is a well known heavy metal considered as one of the most toxic metals on Earth, affecting all viable cells that are exposed even at low concentration. It is introduced to agricultural soils mainly by phosphate fertilizers and causes many toxic symptoms in cells. Phytochelatins (PCs) are non-protein thiols which are involved in oxidative stress protection and are strongly induced by Cd. In this work, we analyzed metal toxicity as well as PCs implication on protection of peanut plants exposed to Cd. Results showed that Cd exposure induced a reduction of peanut growth and produced changes in the histological structure with a deposit of unknown material on the epidermal and endodermal cells. When plants were exposed to 10 µM Cd, no modification of chlorophyll, lipid peroxides, carbonyl groups, or hydrogen peroxide (H2O2) content was observed. At this concentration, peanut leaves and roots glutathione (GSH) content decreased. However, peanut roots were able to synthesize different types of PCs (PC2, PC3, PC4). In conclusion, PC synthesis could prevent metal disturbance on cellular redox balance, avoiding oxidative damage to macromolecules.


Subject(s)
Arachis/drug effects , Arachis/physiology , Cadmium/toxicity , Phytochelatins/physiology , Arachis/metabolism , Oxidative Stress/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Sulfhydryl Compounds/metabolism
4.
J Hazard Mater ; 201-202: 52-9, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22178372

ABSTRACT

Phytoremediation can be a suitable option to manage derelict mine soils. A pot experiment was carried out under semi-controlled conditions with a mine-impacted soil. A further contamination event was mimicked by applying 5% of pyritic sludge. Four species were planted in pots (Myrtus communis, Retama sphaerocarpa, Rosmarinus officinalis and Tamarix gallica), and some pots remained unplanted as a control. The substrates were moderately to highly contaminated, mainly with arsenic and zinc. The strong acidification induced by the pyritic sludge was buffered with lime and plants survived in all the pots. Liming provoked an effective immobilisation of metals and arsenic. Plant establishment decreased labile As in the substrate by 50%, mainly M. communis, although the levels of extractable metals were not affected by the plants. R. sphaerocarpa and M. communis increased the levels of C and N in the soil by 23% and 34% respectively, and also enhanced enzymatic activities and microbial respiration to the double in some cases. The low transfer of trace elements to shoots limited the phytoextraction rate. Our results support the use of phytostabilisation in Mediterranean mine soils and show how plants of R. sphaerocarpa and M. communis may increase soil health and quality during revegetation.


Subject(s)
Calcium Compounds/chemistry , Genista/growth & development , Mining , Myrtus/growth & development , Oxides/chemistry , Rosmarinus/growth & development , Soil , Tamaricaceae/growth & development , Biodegradation, Environmental , Iron/chemistry , Mediterranean Region , Soil/chemistry , Soil/standards , Spain , Sulfides/chemistry
5.
J Environ Manage ; 92(6): 1584-90, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21353375

ABSTRACT

Re-vegetation is the main aim of ecological restoration projects, and in Mediterranean environments native plants are desirable to achieve successful restoration. In 1998, the burst of a tailings dam flooded the Guadiamar river valley downstream from Aznalcóllar (Southern Spain) with sludges that contained elevated concentrations of metals and metalloids, polluting soils and waters. A phytoremediation experiment to assess the potential use of native shrub species for the restoration of soils affected by the spillage was performed from 2005 to 2007, with soils divided into two groups: pH < 5 and pH > 5. Four native shrubs (Myrtus communis, Retama sphaerocarpa, Rosmarinus officinalis and Tamarix gallica) were planted and left to grow without intervention. Trace element concentrations in soils and plants, their extractability in soils, transfer factors and plant survival were used to identify the most-interesting species for phytoremediation. Total As was higher in soils with pH < 5. Ammonium sulphate-extractable zinc, copper, cadmium and aluminium concentrations were higher in very-acid soils, but arsenic was extracted more efficiently when soil pH was >5. Unlike As, which was either fixed by Fe oxides or retained as sulphide, the extractable metals showed significant relationships with the corresponding total soil metal concentration and inverse relationships with soil pH. T. gallica, R. officinalis and R. sphaerocarpa survived better in soils with pH > 5, while M. communis had better survival at pH < 5. R. sphaerocarpa showed the highest survival (30%) in all soils. Trace element transfer from soil to harvestable parts was low for all species and elements, and some species may have been able to decrease trace element availability in the soil. Our results suggest that R. sphaerocarpa is an adequate plant species for phytostabilising these soils, although more research is needed to address the self-sustainability of this remediation technique and the associated environmental changes.


Subject(s)
Environmental Pollution/prevention & control , Magnoliopsida/metabolism , Mining , Soil Pollutants/metabolism , Waste Products/analysis , Arsenic/analysis , Arsenic/isolation & purification , Biodegradation, Environmental , Hydrogen-Ion Concentration , Magnoliopsida/chemistry , Magnoliopsida/growth & development , Metals, Heavy/analysis , Metals, Heavy/isolation & purification , Spain , Species Specificity , Survival Analysis
6.
Plant Cell Environ ; 34(5): 778-91, 2011 May.
Article in English | MEDLINE | ID: mdl-21276009

ABSTRACT

Three-week-old alfalfa (Medicago sativa), barley (Hordeum vulgare) and maize (Zea mays) were exposed for 7 d to 30 µm of mercury (HgCl(2) ) to characterize the Hg speciation in root, with no symptoms of being poisoned. The largest pool (99%) was associated with the particulate fraction, whereas the soluble fraction (SF) accounted for a minor proportion (<1%). Liquid chromatography coupled with electro-spray/time of flight mass spectrometry showed that Hg was bound to an array of phytochelatins (PCs) in root SF, which was particularly varied in alfalfa (eight ligands and five stoichiometries), a species that also accumulated homophytochelatins. Spatial localization of Hg in alfalfa roots by microprobe synchrotron X-ray fluorescence spectroscopy showed that most of the Hg co-localized with sulphur in the vascular cylinder. Extended X-ray Absorption Fine Structure (EXAFS) fingerprint fitting revealed that Hg was bound in vivo to organic-S compounds, i.e. biomolecules containing cysteine. Albeit a minor proportion of total Hg, Hg-PCs complexes in the SF might be important for tolerance to Hg, as was found with Arabidopsis thaliana mutants cad2-1 (with low glutathione content) and cad1-3 (unable to synthesize PCs) in comparison with wild type plants. Interestingly, high-performance liquid chromatography-electrospray ionization-time of flight analysis showed that none of these mutants accumulated Hg-biothiol complexes.


Subject(s)
Hordeum/chemistry , Medicago sativa/chemistry , Mercury/chemistry , Phytochelatins/chemistry , Plant Roots/chemistry , Zea mays/chemistry , Arabidopsis/chemistry , Arabidopsis/genetics , Chromatography, Liquid , Mass Spectrometry , Plant Roots/growth & development , Spectrometry, X-Ray Emission
7.
J Hazard Mater ; 162(2-3): 854-9, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-18603359

ABSTRACT

The present work concerns the distribution and mobility of heavy metals (Fe, Mn, Cu, Zn and Cd) in the surrounding soils of a mine site and their transfer to wild flora. Thus, soils and plants were sampled from a mining valley in NW Madrid (Spain), and total and extractable heavy metals were analysed. Soils affected by mining activities presented total Cd, Cu and Zn concentrations above toxic thresholds. The percentage of extractable element was highest for Cd and lowest for Cu. A highly significant correlation was observed between the total and extractable concentrations of metals in soils, indicating that, among the factors studied, total metals concentration is the most relevant for heavy metals extractability in these soils. (NH(4))(2)SO(4)-extractable metal concentrations in soils are correlated better with metal concentrations in several plant species than total metals in soils, and thus can be used as a suitable and robust method for the estimation of the phytoavailable fraction present in soils. Twenty-five vascular plant species (3 ferns and 22 flowering plants) were analysed, in order to identify exceptional characteristics that would be interesting for soil phytoremediation and/or reclamation. High Cd and Zn concentrations have been found in the aerial parts of Hypericum perforatum (Cd), Salix atrocinerea (Cd, Zn) and Digitalis thapsi (Cd, Zn). The present paper is, to the best of our knowledge, the first report of the metal accumulation ability of the two latter plant species. The phytoremediation ability of S. atrocinerea for Cd and Zn was estimated, obtaining intervals of time that could be considered suitable for the phytoextraction of polluted soils.


Subject(s)
Metals, Heavy/analysis , Mining , Plants/metabolism , Soil Pollutants/analysis , Environmental Restoration and Remediation/methods , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Spain
8.
Chemosphere ; 71(3): 466-73, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18037471

ABSTRACT

Myrtus communis, Arbutus unedo and Retama sphaerocarpa are Mediterranean shrubs widely used in revegetation of semiarid degraded soils. The aim of this work is to study the resistance of these plants to arsenic under controlled conditions, in order to evaluate their potential use in revegetation and/or phytoremediation of As-polluted soils. R. sphaerocarpa showed higher resistance to As than M. communis or A. unedo according to its higher EC50, P status and P/As molar ratio in both, roots and shoots, and the lower increases in lipid peroxidation and decrease of chlorophyll levels in response to arsenic, while the highest arsenate sensitivity was obtained for A. unedo. Arsenic was mainly retained in roots, and, although M. communis accumulated higher arsenic amounts than the other two species, R. sphaerocarpa showed the highest root to shoot transfer. Most of the studied parameters (chlorophylls, MDA and total thiols) showed significant correlation with arsenic concentration in roots and leaves of plants, so they can be useful indexes in the diagnosis of arsenic toxicity in these species. According to our results, both M. communis and R. sphaerocarpa could be used in the revegetation of moderately arsenic contaminated sites.


Subject(s)
Arsenic/toxicity , Ericaceae/drug effects , Fabaceae/drug effects , Myrtus/drug effects , Soil Pollutants/toxicity , Arsenic/metabolism , Biodegradation, Environmental , Chlorophyll/metabolism , Chlorophyll A , Drug Tolerance , Ericaceae/growth & development , Ericaceae/metabolism , Fabaceae/growth & development , Fabaceae/metabolism , Malondialdehyde/metabolism , Myrtus/growth & development , Myrtus/metabolism , Phosphorus/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/drug effects , Plant Shoots/growth & development , Plant Shoots/metabolism , Soil Pollutants/metabolism , Sulfhydryl Compounds/metabolism
9.
New Phytol ; 176(1): 96-107, 2007.
Article in English | MEDLINE | ID: mdl-17803643

ABSTRACT

Here, the kinetics of oxidative stress responses of alfalfa (Medicago sativa) seedlings to cadmium (Cd) and mercury (Hg) (0, 3, 10 and 30 microm) exposure, expanding from a few minutes to 24 h, were studied. Intracellular oxidative stress was analysed using 2',7'-dichlorofluorescin diacetate and extracellular hydrogen peroxide (H(2)O(2)) production was studied with Amplex Red. Growth inhibition, concentrations of ascorbate, glutathione (GSH), homoglutathione (hGSH), Cd and Hg, ascorbate peroxidase (APX) activity, and expression of genes related to GSH metabolism were also determined. Both Cd and Hg increased cellular reactive oxygen species (ROS) production and extracellular H(2)O(2) formation, but in different ways. The increase was mild and slow with Cd, but more rapid and transient with Hg. Hg treatments also caused a higher cell death rate, significant oxidation of hGSH, as well as increased APX activity and transient overexpression of glutathione reductase 2, glutamylcysteinyl synthetase, and homoglutathione synthetase genes. However, Cd caused minor alterations. Hg accumulation was one order of magnitude higher than Cd accumulation. The different kinetics of early physiological responses in vivo to Cd and Hg might be relevant to the characterization of their mechanisms of toxicity. Thus, high accumulation of Hg might explain the metabolism poisoning observed in Hg-treated seedlings.


Subject(s)
Cadmium/pharmacology , Homeostasis/drug effects , Medicago sativa/metabolism , Mercury/pharmacology , Seedlings/metabolism , Cadmium/metabolism , Gene Expression/drug effects , Kinetics , Medicago sativa/drug effects , Medicago sativa/growth & development , Mercury/metabolism , Oxidation-Reduction , Oxidative Stress , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/physiology , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Seedlings/drug effects , Seedlings/growth & development
10.
J Exp Bot ; 56(418): 2239-51, 2005 Aug.
Article in English | MEDLINE | ID: mdl-15996984

ABSTRACT

Alfalfa (Medicago sativa) plantlets were exposed to Cd or Hg to study the kinetics of diverse stress indexes. In the so-called beaker-size hydroponic system, plantlets were grown in 30 microM of Cd or Hg for 7 d. Oxidative stress took place and increased over time, a linear response being observed with Cd but not with Hg. To improve the sensitivity of the stress assays used, a micro-assay system, in which seedlings were exposed for 24 h, was developed. Phytotoxicity of metals, quantified as growth inhibition, was observed well before there was any change in the non-protein thiol tissue concentration. When measured with conventional techniques, oxidative stress indexes did not show significant variation. To trace early and small plant responses to Cd and Hg, a microscopic analysis with novel fluorescent dyes, which had not yet been exploited to any significant extent for use in plants, was conducted. These fluorescent probes, which allowed minute cellular responses to 0, 3, 10, and 30 microM of both metals to be visualized in the roots of the alfalfa seedlings, were: (i) 2',7'-dichlorofluorescin diacetate that labels peroxides; (ii) monochlorobimane that stains reduced glutathione/homoglutathione (GSH/hGSH); and (iii) propidium iodide that marks nuclei of dead cells. Oxidative stress and cell death increased after exposure for 6-24 h to Cd and Hg, but labelling of GSH/hGSH decreased acutely. This diminution might be the result of direct interaction of GSH/hGSH with both Cd and Hg, as inferred from an in vitro conjugation assay. Therefore, both Cd and Hg not only compromised severely the cellular redox homeostasis, but also caused cell necrosis. In plants treated with 1 mM L-buthionine sulphoximine, a potent inhibitor of GSH/hGSH synthesis, only the oxidative stress symptoms appeared, indicating that the depletion of the GSH/hGSH pool was not sufficient to promote cell death, and that other phytotoxic mechanisms might be involved.


Subject(s)
Cadmium/toxicity , Medicago sativa/drug effects , Mercury/toxicity , Cell Death/drug effects , Glutathione/metabolism , Oxidative Stress/drug effects , Seedlings/cytology , Seedlings/drug effects , Seedlings/growth & development , Sulfhydryl Compounds/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...