Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Bioinformatics ; 24(1): 398, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880571

ABSTRACT

BACKGROUND: In this paper, we are interested in interactions between a high-dimensional -omics dataset and clinical covariates. The goal is to evaluate the relationship between a phenotype of interest and a high-dimensional omics pathway, where the effect of the omics data depends on subjects' clinical covariates (age, sex, smoking status, etc.). For instance, metabolic pathways can vary greatly between sexes which may also change the relationship between certain metabolic pathways and a clinical phenotype of interest. We propose partitioning the clinical covariate space and performing a kernel association test within those partitions. To illustrate this idea, we focus on hierarchical partitions of the clinical covariate space and kernel tests on metabolic pathways. RESULTS: We see that our proposed method outperforms competing methods in most simulation scenarios. It can identify different relationships among clinical groups with higher power in most scenarios while maintaining a proper Type I error rate. The simulation studies also show a robustness to the grouping structure within the clinical space. We also apply the method to the COPDGene study and find several clinically meaningful interactions between metabolic pathways, the clinical space, and lung function. CONCLUSION: TreeKernel provides a simple and interpretable process for testing for relationships between high-dimensional omics data and clinical outcomes in the presence of interactions within clinical cohorts. The method is broadly applicable to many studies.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Humans , Phenotype , Computer Simulation
2.
PLoS Comput Biol ; 17(10): e1008986, 2021 10.
Article in English | MEDLINE | ID: mdl-34679079

ABSTRACT

High-throughput data such as metabolomics, genomics, transcriptomics, and proteomics have become familiar data types within the "-omics" family. For this work, we focus on subsets that interact with one another and represent these "pathways" as graphs. Observed pathways often have disjoint components, i.e., nodes or sets of nodes (metabolites, etc.) not connected to any other within the pathway, which notably lessens testing power. In this paper we propose the Pathway Integrated Regression-based Kernel Association Test (PaIRKAT), a new kernel machine regression method for incorporating known pathway information into the semi-parametric kernel regression framework. This work extends previous kernel machine approaches. This paper also contributes an application of a graph kernel regularization method for overcoming disconnected pathways. By incorporating a regularized or "smoothed" graph into a score test, PaIRKAT can provide more powerful tests for associations between biological pathways and phenotypes of interest and will be helpful in identifying novel pathways for targeted clinical research. We evaluate this method through several simulation studies and an application to real metabolomics data from the COPDGene study. Our simulation studies illustrate the robustness of this method to incorrect and incomplete pathway knowledge, and the real data analysis shows meaningful improvements of testing power in pathways. PaIRKAT was developed for application to metabolomic pathway data, but the techniques are easily generalizable to other data sources with a graph-like structure.


Subject(s)
Metabolome/genetics , Metabolomics/methods , Pulmonary Disease, Chronic Obstructive , Algorithms , Biomarkers/blood , Databases, Genetic , Humans , Phenotype , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/metabolism , Regression Analysis
3.
BMC Bioinformatics ; 22(1): 41, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33526006

ABSTRACT

BACKGROUND: The drive to understand how microbial communities interact with their environments has inspired innovations across many fields. The data generated from sequence-based analyses of microbial communities typically are of high dimensionality and can involve multiple data tables consisting of taxonomic or functional gene/pathway counts. Merging multiple high dimensional tables with study-related metadata can be challenging. Existing microbiome pipelines available in R have created their own data structures to manage this problem. However, these data structures may be unfamiliar to analysts new to microbiome data or R and do not allow for deviations from internal workflows. Existing analysis tools also focus primarily on community-level analyses and exploratory visualizations, as opposed to analyses of individual taxa. RESULTS: We developed the R package "tidyMicro" to serve as a more complete microbiome analysis pipeline. This open source software provides all of the essential tools available in other popular packages (e.g., management of sequence count tables, standard exploratory visualizations, and diversity inference tools) supplemented with multiple options for regression modelling (e.g., negative binomial, beta binomial, and/or rank based testing) and novel visualizations to improve interpretability (e.g., Rocky Mountain plots, longitudinal ordination plots). This comprehensive pipeline for microbiome analysis also maintains data structures familiar to R users to improve analysts' control over workflow. A complete vignette is provided to aid new users in analysis workflow. CONCLUSIONS: tidyMicro provides a reliable alternative to popular microbiome analysis packages in R. We provide standard tools as well as novel extensions on standard analyses to improve interpretability results while maintaining object malleability to encourage open source collaboration. The simple examples and full workflow from the package are reproducible and applicable to external data sets.


Subject(s)
Data Analysis , Microbiota , Software , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...