Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
JIMD Rep ; 63(4): 322-329, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35822099

ABSTRACT

Carnitine palmitoyltransferase 1A (CPT1A) deficiency is a long chain fatty acid oxidation disorder, typically presenting with hypoketotic hypoglycaemia and liver dysfunction during fasting and intercurrent illness. Classical CPT1A deficiency is a rare disease, although a milder 'Arctic variant' (p.P479L) is common in the Inuit population. Since the introduction of expanded metabolic screening (EMS), the newborn screening programmes of Hawai'i and New Zealand (NZ) have detected a significant increase in the incidence of CPT1A deficiency. We report 22 individuals of Micronesian descent (12 in NZ and 10 in Hawai'i), homozygous for a CPT1A c.100T>C (p.S34P) variant detected by EMS or ascertained following diagnosis of a family member. No individuals with the Micronesian variant presented clinically with metabolic decompensation prior to diagnosis or during follow-up. Three asymptomatic homozygous adults were detected following the diagnosis of their children by EMS. CPT1A activity in cultured skin fibroblasts showed residual enzyme activity of 26% of normal controls. Secondly, we report three individuals from two unrelated Niuean families who presented clinically with symptoms of classic CPT1A deficiency, prior to the introduction of EMS. All were found to be homozygous for a CPT1A c.2122A>C (p.S708R) variant. CPT1A activity in fibroblasts of all three individuals was severely reduced at 4% of normal controls. Migration pressure, in part due to climate change may lead to increased frequency of presentation of Pacific peoples to regional metabolic services around the world. Knowledge of genotype-phenotype correlations in these populations will therefore inform counselling and treatment of those detected by newborn screening.

2.
Materials (Basel) ; 13(2)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31936012

ABSTRACT

One of the most appealing qualities of additive manufacturing (AM) is the ability to produce complex geometries faster than most traditional methods. The trade-off for this advantage is that AM parts are extremely vulnerable to residual stresses (RSs), which may lead to geometrical distortions and quality inspection failures. Additionally, tensile RSs negatively impact the fatigue life and other mechanical performance characteristics of the parts in service. Therefore, in order for AM to cross the borders of prototyping toward a viable manufacturing process, the major challenge of RS development must be addressed. Different AM technologies contain many unique features and parameters, which influence the temperature gradients in the part and lead to development of RSs. The stresses formed in AM parts are typically observed to be compressive in the center of the part and tensile on the top layers. To mitigate these stresses, process parameters must be optimized, which requires exhaustive and costly experimentations. Alternative to experiments, holistic computational frameworks which can capture much of the physics while balancing computational costs are introduced for rapid and inexpensive investigation into development and prevention of RSs in AM. In this review, the focus is on metal additive manufacturing, referred to simply as "AM", and, after a brief introduction to various AM technologies and thermoelastic mechanics, prior works on sources of RSs in AM are discussed. Furthermore, the state-of-the-art knowledge on RS measurement techniques, the influence of AM process parameters, current modeling approaches, and distortion prevention approaches are reported.

4.
Mol Genet Metab ; 119(1-2): 83-90, 2016 09.
Article in English | MEDLINE | ID: mdl-27370710

ABSTRACT

BACKGROUND: Miller syndrome (post-axial acrofacial dysostosis) arises from gene mutations for the mitochondrial enzyme dihydroorotate dehydrogenase (DHODH). Nonetheless, despite demonstrated loss of enzyme activity dihydroorotate (DHO) has not been shown to accumulate, but paradoxically urine orotate has been reported to be raised, confusing the metabolic diagnosis. METHODS: We analysed plasma and urine from a 4-year-old male Miller syndrome patient. DHODH mutations were determined by PCR and Sanger sequencing. Analysis of DHO and orotic acid (OA) in urine, plasma and blood-spot cards was performed using liquid chromatography-tandem mass spectrometry. In vitro stability of DHO in distilled water and control urine was assessed for up to 60h. The patient received a 3-month trial of oral uridine for behavioural problems. RESULTS: The patient had early liver complications that are atypical of Miller syndrome. DHODH genotyping demonstrated compound-heterozygosity for frameshift and missense mutations. DHO was grossly raised in urine and plasma, and was detectable in dried spots of blood and plasma. OA was raised in urine but undetectable in plasma. DHO did not spontaneously degrade to OA. Uridine therapy did not appear to resolve behavioural problems during treatment, but it lowered plasma DHO. CONCLUSION: This case with grossly raised plasma DHO represents the first biochemical confirmation of functional DHODH deficiency. DHO was also easily detectable in dried plasma and blood spots. We concluded that DHO oxidation to OA must occur enzymatically during renal secretion. This case resolved the biochemical conundrum in previous reports of Miller syndrome patients, and opened the possibility of rapid biochemical screening.


Subject(s)
Abnormalities, Multiple/genetics , Limb Deformities, Congenital/genetics , Mandibulofacial Dysostosis/genetics , Micrognathism/genetics , Orotic Acid/analogs & derivatives , Oxidoreductases Acting on CH-CH Group Donors/genetics , Abnormalities, Multiple/blood , Abnormalities, Multiple/physiopathology , Abnormalities, Multiple/urine , Child, Preschool , Dihydroorotate Dehydrogenase , Genotype , Humans , Limb Deformities, Congenital/blood , Limb Deformities, Congenital/physiopathology , Limb Deformities, Congenital/urine , Male , Mandibulofacial Dysostosis/blood , Mandibulofacial Dysostosis/physiopathology , Mandibulofacial Dysostosis/urine , Micrognathism/blood , Micrognathism/physiopathology , Micrognathism/urine , Mutation , Orotic Acid/blood , Orotic Acid/urine , Oxidation-Reduction , Oxidoreductases Acting on CH-CH Group Donors/blood , Oxidoreductases Acting on CH-CH Group Donors/urine , Uridine/blood , Uridine/urine
5.
Appl Environ Microbiol ; 82(15): 4682-4695, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27235430

ABSTRACT

UNLABELLED: By combining genomics and isotope imaging analysis using high-resolution secondary ion mass spectrometry (NanoSIMS), we examined the function and evolution of Bacteroidales ectosymbionts of the protist Barbulanympha from the hindguts of the wood-eating cockroach Cryptocercus punctulatus In particular, we investigated the structure of ectosymbiont genomes, which, in contrast to those of endosymbionts, has been little studied to date, and tested the hypothesis that these ectosymbionts fix nitrogen. Unlike with most obligate endosymbionts, genome reduction has not played a major role in the evolution of the Barbulanympha ectosymbionts. Instead, interaction with the external environment has remained important for this symbiont as genes for synthesis of transporters, outer membrane proteins, lipopolysaccharides, and lipoproteins have been retained. The ectosymbiont genome carried two complete operons for nitrogen fixation, a urea transporter, and a urease, indicating the availability of nitrogen as a driving force behind the symbiosis. NanoSIMS analysis of C. punctulatus hindgut symbionts exposed in vivo to (15)N2 supports the hypothesis that Barbulanympha ectosymbionts are capable of nitrogen fixation. This genomic and in vivo functional investigation of protist ectosymbionts highlights the diversity of evolutionary forces and trajectories that shape symbiotic interactions. IMPORTANCE: The ecological and evolutionary importance of symbioses is increasingly clear, but the overall diversity of symbiotic interactions remains poorly explored. In this study, we investigated the evolution and nitrogen fixation capabilities of ectosymbionts attached to the protist Barbulanympha from the hindgut of the wood-eating cockroach Cryptocercus punctulatus In addressing genome evolution of protist ectosymbionts, our data suggest that the ecological pressures influencing the evolution of extracellular symbionts clearly differ from intracellular symbionts and organelles. Using NanoSIMS analysis, we also obtained direct imaging evidence of a specific hindgut microbe playing a role in nitrogen fixation. These results demonstrate the power of combining NanoSIMS and genomics tools for investigating the biology of uncultivable microbes. This investigation paves the way for a more precise understanding of microbial interactions in the hindguts of wood-eating insects and further exploration of the diversity and ecological significance of symbiosis between microbes.


Subject(s)
Bacteroidetes/physiology , Cockroaches/parasitology , Evolution, Molecular , Genome, Bacterial , Nitrogen Fixation , Parabasalidea/microbiology , Symbiosis , Animals , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Cockroaches/physiology , Feeding Behavior , Parabasalidea/physiology , Phylogeny , Wood/metabolism , Wood/parasitology
6.
Hepatology ; 62(2): 417-28, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26011400

ABSTRACT

UNLABELLED: Liver-targeted gene therapy based on recombinant adeno-associated viral vectors (rAAV) shows promising therapeutic efficacy in animal models and adult-focused clinical trials. This promise, however, is not directly translatable to the growing liver, where high rates of hepatocellular proliferation are accompanied by loss of episomal rAAV genomes and subsequently a loss in therapeutic efficacy. We have developed a hybrid rAAV/piggyBac transposon vector system combining the highly efficient liver-targeting properties of rAAV with stable piggyBac-mediated transposition of the transgene into the hepatocyte genome. Transposition efficiency was first tested using an enhanced green fluorescent protein expression cassette following delivery to newborn wild-type mice, with a 20-fold increase in stably gene-modified hepatocytes observed 4 weeks posttreatment compared to traditional rAAV gene delivery. We next modeled the therapeutic potential of the system in the context of severe urea cycle defects. A single treatment in the perinatal period was sufficient to confer robust and stable phenotype correction in the ornithine transcarbamylase-deficient Spf(ash) mouse and the neonatal lethal argininosuccinate synthetase knockout mouse. Finally, transposon integration patterns were analyzed, revealing 127,386 unique integration sites which conformed to previously published piggyBac data. CONCLUSION: Using a hybrid rAAV/piggyBac transposon vector system, we achieved stable therapeutic protection in two urea cycle defect mouse models; a clinically conceivable early application of this technology in the management of severe urea cycle defects could be as a bridging therapy while awaiting liver transplantation; further improvement of the system will result from the development of highly human liver-tropic capsids, the use of alternative strategies to achieve transient transposase expression, and engineered refinements in the safety profile of piggyBac transposase-mediated integration.


Subject(s)
Adenoviridae/genetics , Genetic Therapy/methods , Genetic Vectors/pharmacology , Hyperammonemia/therapy , Urea/metabolism , Animals , Animals, Newborn , Disease Models, Animal , Gene Transfer Techniques , Humans , Hyperammonemia/diagnosis , Liver Diseases/therapy , Mice , Mice, Transgenic , Severity of Illness Index , Statistics, Nonparametric
7.
J Eukaryot Microbiol ; 62(4): 494-504, 2015.
Article in English | MEDLINE | ID: mdl-25600410

ABSTRACT

Macrotrichomonas (Cristamonadea: Parabasalia) is an anaerobic, amitochondriate flagellate symbiont of termite hindguts. It is noteworthy for being large but not structurally complex compared with other large parabasalians, and for retaining a structure similar in appearance to the undulating membrane (UM) of small flagellates closely related to cristamonads, e.g. Tritrichomonas. Here, we have characterised the SSU rDNA from two species described as Macrotrichomonas: M. restis Kirby 1942 from Neotermes jouteli and M. lighti Connell 1932 from Paraneotermes simplicicornis. These species do not form a clade: M. lighti branches with previously characterised Macrotrichomonas sequences from Glyptotermes, while M. restis branches with the genus Metadevescovina. We examined the M. restis UM by light microscopy, scanning electron microscopy, and transmission electron microscopy, and we find common characteristics with the proximal portion of the robust recurrent flagellum of devescovinids. Altogether, we show the genus Macrotrichomonas to be polyphyletic and propose transferring M. restis to a new genus, Macrotrichomonoides. We also hypothesise that the macrotrichomonad body plan represents the ancestral state of cristamonads, from which other major forms evolved.


Subject(s)
DNA, Protozoan/genetics , Isoptera/parasitology , Parabasalidea/classification , Parabasalidea/genetics , Animals , DNA, Ribosomal/genetics , Genes, rRNA , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Molecular Sequence Data , Parabasalidea/cytology , Phylogeny , Symbiosis
8.
J Eukaryot Microbiol ; 62(2): 255-9, 2015.
Article in English | MEDLINE | ID: mdl-25155455

ABSTRACT

Kofoidia loriculata is a parabasalid symbiont inhabiting the hindgut of the lower termite Paraneotermes simplicicornis. It was initially described as a lophomonad due to its apical tuft of multiple flagella that disintegrate during cell division, but its phylogenetic relationships have not been investigated using molecular evidence. From single cell isolations, we sequenced the small subunit rRNA gene and determined that K. loriculata falls within the Cristamonadea, but is unrelated to other lophomonads. This analysis further demonstrates the polyphyly of the lophomonads and the necessity to re-assess the morphological and cellular evolution of the Cristamonadea.


Subject(s)
Parabasalidea/classification , Phylogeny , Animals , Base Sequence , Biological Evolution , Genes, rRNA , Isoptera , Parabasalidea/genetics , RNA, Ribosomal/genetics
9.
PLoS One ; 9(11): e113366, 2014.
Article in English | MEDLINE | ID: mdl-25412338

ABSTRACT

BACKGROUND AND AIMS: L-glutamine is an efficacious glucagon-like peptide (GLP)-1 secretagogue in vitro. When administered with a meal, glutamine increases GLP-1 and insulin excursions and reduces postprandial glycaemia in type 2 diabetes patients. The aim of the study was to assess the efficacy and safety of daily glutamine supplementation with or without the dipeptidyl peptidase (DPP)-4 inhibitor sitagliptin in well-controlled type 2 diabetes patients. METHODS: Type 2 diabetes patients treated with metformin (n = 13, 9 men) with baseline glycated hemoglobin (HbA1c) 7.1±0.3% (54±4 mmol/mol) received glutamine (15 g bd)+ sitagliptin (100 mg/d) or glutamine (15 g bd) + placebo for 4 weeks in a randomized crossover study. RESULTS: HbA1c (P = 0.007) and fructosamine (P = 0.02) decreased modestly, without significant time-treatment interactions (both P = 0.4). Blood urea increased (P<0.001) without a significant time-treatment interaction (P = 0.8), but creatinine and estimated glomerular filtration rate (eGFR) were unchanged (P≥0.5). Red blood cells, hemoglobin, hematocrit, and albumin modestly decreased (P≤0.02), without significant time-treatment interactions (P≥0.4). Body weight and plasma electrolytes remained unchanged (P≥0.2). CONCLUSIONS: Daily oral supplementation of glutamine with or without sitagliptin for 4 weeks decreased glycaemia in well-controlled type 2 diabetes patients, but was also associated with mild plasma volume expansion. TRIAL REGISTRATION: ClincalTrials.gov NCT00673894.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glutamine/administration & dosage , Glutamine/adverse effects , Hypoglycemic Agents/administration & dosage , Sitagliptin Phosphate/administration & dosage , Administration, Oral , Aged , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/physiopathology , Drug Administration Schedule , Drug Therapy, Combination , Female , Glutamine/therapeutic use , Glycated Hemoglobin/metabolism , Humans , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/therapeutic use , Male , Metformin/administration & dosage , Metformin/therapeutic use , Middle Aged , Plasma Volume/drug effects , Sitagliptin Phosphate/therapeutic use , Treatment Outcome
10.
J Inherit Metab Dis ; 37(6): 881-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24970580

ABSTRACT

There have been few reports of cases missed by expanded newborn screening. Tandem mass spectrometry was introduced in New South Wales, Australia in 1998 to screen for selected disorders of amino acid, organic acid and fatty acid metabolism. Of 1,500,000 babies screened by 2012, 1:2700 were diagnosed with a target disorder. Fifteen affected babies were missed by testing, and presented clinically or in family studies. In three cases (cobalamin C defect, very-long-chain acyl-CoA dehydrogenase deficiency and glutaric aciduria type 1), this led to modification of analyte cut-off values or protocols during the first 3 years. Two patients with intermittent MSUD, two with ß-ketothiolase deficiency, two with citrin deficiency, two siblings with arginosuccinic aciduria, two siblings with homocystinuria, and one with cobalamin C defect had analyte values and ratios below the action limits which could not have been detected without unacceptable false-positive rates. A laboratory interpretation error led to missing one case of cobalamin C defect. Reference ranges, regularly reviewed, were not altered. For citrin deficiency, while relevant metabolites are detectable by tandem mass spectrometry, our cut-off values do not specifically screen for that disorder. Most of the missed cases are doing well and with no acute presentations although eight of 15 are likely to have been somewhat adversely affected by a late diagnosis. Analyte ratio and cut-off value optimisations are important, but for some disorders occasional missed cases may have to be tolerated to maintain an acceptable specificity, and avoid harm from screening.


Subject(s)
Acetyl-CoA C-Acyltransferase/deficiency , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Diagnostic Errors , Glutaryl-CoA Dehydrogenase/deficiency , Lipid Metabolism, Inborn Errors/diagnosis , Mitochondrial Diseases/diagnosis , Muscular Diseases/diagnosis , Neonatal Screening/methods , Amino Acids/blood , Child, Preschool , Congenital Bone Marrow Failure Syndromes , Humans , Infant , Infant, Newborn , New South Wales , Reference Values , Sensitivity and Specificity , Tandem Mass Spectrometry/methods
11.
Diabetes ; 63(6): 1881-94, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24430435

ABSTRACT

Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised.


Subject(s)
Cell Respiration , Diabetes Mellitus, Type 2/metabolism , HSP72 Heat-Shock Proteins/metabolism , Insulin Resistance , Mitochondria, Muscle/metabolism , Obesity/metabolism , AMP-Activated Protein Kinases/metabolism , Animals , Blood Glucose , Blotting, Western , Body Weight , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/physiopathology , Diet, High-Fat , Energy Metabolism , Fatty Acids/metabolism , Leptin/metabolism , Male , Mice , Muscle, Skeletal/metabolism , Obesity/genetics , Obesity/physiopathology , Oxidation-Reduction , Oxidative Phosphorylation , Peroxisome Proliferator-Activated Receptors/metabolism , Rats , Real-Time Polymerase Chain Reaction , Sirtuin 1/metabolism
12.
Brain ; 137(Pt 1): 44-56, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24253200

ABSTRACT

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.


Subject(s)
Bulbar Palsy, Progressive/genetics , Hearing Loss, Sensorineural/genetics , Mutation/genetics , Receptors, G-Protein-Coupled/genetics , Adolescent , Brain/pathology , Bulbar Palsy, Progressive/drug therapy , Carnitine/analogs & derivatives , Carnitine/blood , Child , Child, Preschool , Exome/genetics , Female , Genotype , Hearing Loss, Sensorineural/drug therapy , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Microarray Analysis , Motor Neuron Disease/physiopathology , Neurologic Examination , Pedigree , RNA/biosynthesis , RNA/genetics , Riboflavin/therapeutic use , Sequence Analysis, DNA , Sural Nerve/pathology , Vitamins/therapeutic use , Young Adult
13.
Microsc Microanal ; 19(6): 1490-501, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24119340

ABSTRACT

The hindguts of lower termites harbor highly diverse, endemic communities of symbiotic protists, bacteria, and archaea essential to the termite's ability to digest wood. Despite over a century of experimental studies, ecological roles of many of these microbes are unknown, partly because almost none can be cultivated. Many of the protists associate with bacterial symbionts, but hypotheses for their respective roles in nutrient exchange are based on genomes of only two such bacteria. To show how the ecological roles of protists and nutrient transfer with symbiotic bacteria can be elucidated by direct imaging, we combined stable isotope labeling (13C-cellulose) of live termites with analysis of fixed hindgut microbes using correlated scanning electron microscopy, focused ion beam-scanning electron microscopy (FIB-SEM), transmission electron microscopy, and high resolution imaging mass spectrometry (NanoSIMS). We developed methods to prepare whole labeled cells on solid substrates, whole labeled cells milled with a FIB-SEM instrument to reveal cell interiors, and ultramicrotome sections of labeled cells for NanoSIMS imaging of 13C enrichment in protists and associated bacteria. Our results show these methods have the potential to provide direct evidence for nutrient flow and suggest the oxymonad protist Oxymonas dimorpha phagocytoses and enzymatically degrades ingested wood fragments, and may transfer carbon derived from this to its surface bacterial symbionts.


Subject(s)
Bacteria/metabolism , Bacterial Physiological Phenomena , Eukaryota/physiology , Gastrointestinal Tract/microbiology , Isoptera/microbiology , Symbiosis , Animals , Carbon Isotopes/metabolism , Cellulose/metabolism , Eukaryota/metabolism , Isotope Labeling , Mass Spectrometry , Microscopy, Electron
14.
Mol Ther ; 21(10): 1823-31, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23817206

ABSTRACT

Viral vectors based on adeno-associated virus (AAV) are showing exciting promise in gene therapy trials targeting the adult liver. A major challenge in extending this promise to the pediatric liver is the loss of episomal vector genomes that accompanies hepatocellular proliferation during liver growth. Hence maintenance of sufficient transgene expression will be critical for success in infants and children. We therefore set out to explore the therapeutic efficacy and durability of liver-targeted gene transfer in the challenging context of a neonatal lethal urea cycle defect, using the argininosuccinate synthetase deficient mouse. Lethal neonatal hyperammonemia was prevented by prenatal and early postnatal vector delivery; however, hyperammonemia subsequently recurred limiting survival to no more than 33 days despite vector readministration. Antivector antibodies acquired in milk from vector-exposed dams were subsequently shown to be blocking vector readministration, and were avoided by crossfostering vector-treated pups to vector-naive dams. In the absence of passively acquired antivector antibodies, vector redelivery proved efficacious with mice surviving to adulthood without recurrence of significant hyperammonemia. These data demonstrate the potential of AAV vectors in the developing liver, showing that vector readministration can be used to counter growth-associated loss of transgene expression provided the challenge of antivector humoral immunity is addressed.


Subject(s)
Argininosuccinate Synthase/genetics , Citrullinemia/therapy , Dependovirus/genetics , Genetic Therapy/methods , Genetic Vectors , Animals , Animals, Newborn , Argininosuccinate Synthase/deficiency , Citrullinemia/genetics , Citrullinemia/mortality , Female , Fetal Therapies , Fetoscopy , HEK293 Cells , Humans , Hyperammonemia/etiology , Immunity, Maternally-Acquired , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity , Pregnancy , Transgenes
15.
Pediatr Emerg Care ; 29(5): 644-5, 2013 May.
Article in English | MEDLINE | ID: mdl-23640143

ABSTRACT

The complaint of nontraumatic neck pain in a pediatric patient without fever or any other symptoms is unusual and can be very challenging. We present the case of a 4-year-old boy with imaging consistent with a rare diagnosis. This report discusses this diagnosis as well as the utility of advanced imaging and laboratory evaluations in the presentation of pediatric neck pain.


Subject(s)
Calcinosis/diagnostic imaging , Intervertebral Disc/diagnostic imaging , Neck Pain/etiology , Spinal Diseases/diagnostic imaging , Tomography, X-Ray Computed , Calcinosis/complications , Child, Preschool , Humans , Male , Neck Pain/therapy , Spinal Diseases/complications
16.
J Eukaryot Microbiol ; 60(2): 203-13, 2013.
Article in English | MEDLINE | ID: mdl-23398273

ABSTRACT

Staurojoenina is a large and structurally complex genus of hypermastigont parabasalians found in the hindgut of lower termites. Although several species of Staurojoenina have been described worldwide, all Staurojoenina observed to date in different species of North American termites have been treated as the same species, S. assimilis. Here, we characterize Staurojoenina from the North American termite Neotermes jouteli using light microscopy, scanning electron microscopy, and phylogenetic analysis of small subunit ribosomal RNA, and compare it with S. assimilis from its type host, Incisitermes minor. The basic morphological characteristics of the N. jouteli symbiont, including its abundant bacterial epibionts, are similar as far as they may be compared with existing data from S. assimilis, although not consistently identical. In contrast, we find that they are extremely distantly related at the molecular level, sharing a pairwise similarity of SSU rRNA genes comparable to that seen between different genera or even families of other parabasalians. Based on their evolutionary distance and habitat in different termite genera, we consider the N. jouteli Staurojoenina to be distinct from S. assimilis, and describe a new species, Staurojoenina mulleri, in honor of the pioneering parabasalian researcher, Miklos Muller.


Subject(s)
Isoptera/parasitology , Parabasalidea/classification , Parabasalidea/cytology , Animals , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Microscopy , Molecular Sequence Data , North America , Parabasalidea/genetics , Parabasalidea/isolation & purification , Phylogeny , RNA, Protozoan/genetics , RNA, Ribosomal/genetics , Sequence Analysis, DNA
17.
JIMD Rep ; 8: 11-5, 2013.
Article in English | MEDLINE | ID: mdl-23430514

ABSTRACT

INTRODUCTION: Trimethylaminuria is a malodour syndrome caused by a functional defect of flavin-containing monoxygenase 3 (FMO3), resulting in accumulation of trimethylamine in body secretions. Recently, (E, E)-2, 4-undecadienal has been shown to deodorize the offensive odour of cooked porcine intestines (chitlins). We tested the deodorizing effect of commercially available (E, E)-2, 4-undecadienal on the odour of trimethylamine (TMA) in solution. STUDY PARTICIPANTS: Eleven volunteers among staff of the Children's Hospital at Westmead, Sydney, Australia. METHODS: This was a study in three stages. In the first stage,12 volunteers sniffed and graded a commercially available trimethylamine at variable concentrations (12.5-10,000 µmol/L). Those who could smell trimethylamine scored the odour of mixtures of (E, E)-2, 4-undecadienal and trimethylamine. Finally, the odour of trimethylamine was graded with increasing concentrations of (E, E)-2, 4-undecadienal (0.1-100 ppm). RESULTS: All except one could detect the characteristic trimethylamine odour at varying concentrations (12.5-10,000 µmol/L) and reported the odour as offensive and fish like. There was a dose response effect of the ability of (E, E)-2, 4-undecadienal to deodorize the odour of trimethylamine. (E, E)-2, 4-undecadienal at 10 ppm appeared to deodorize the odour of trimethylamine at 1,000 µmol/L without making the former's odour obvious. CONCLUSIONS: We have demonstrated that (E, E)-2, 4-undecadienal has a deodorizing effect on the offensive odour of trimethylamine in solution. The mechanism of action for this effect and potential for treatment of affected individuals needs further research.

18.
Proc Natl Acad Sci U S A ; 110(8): E613-22, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23359681

ABSTRACT

Sphingolipids play important roles in plasma membrane structure and cell signaling. However, their lateral distribution in the plasma membrane is poorly understood. Here we quantitatively analyzed the sphingolipid organization on the entire dorsal surface of intact cells by mapping the distribution of (15)N-enriched ions from metabolically labeled (15)N-sphingolipids in the plasma membrane, using high-resolution imaging mass spectrometry. Many types of control experiments (internal, positive, negative, and fixation temperature), along with parallel experiments involving the imaging of fluorescent sphingolipids--both in living cells and during fixation of living cells--exclude potential artifacts. Micrometer-scale sphingolipid patches consisting of numerous (15)N-sphingolipid microdomains with mean diameters of ∼200 nm are always present in the plasma membrane. Depletion of 30% of the cellular cholesterol did not eliminate the sphingolipid domains, but did reduce their abundance and long-range organization in the plasma membrane. In contrast, disruption of the cytoskeleton eliminated the sphingolipid domains. These results indicate that these sphingolipid assemblages are not lipid rafts and are instead a distinctly different type of sphingolipid-enriched plasma membrane domain that depends upon cortical actin.


Subject(s)
Fibroblasts/chemistry , Membrane Lipids/chemistry , Sphingolipids/chemistry , Cell Membrane/chemistry , Hemagglutinins/chemistry , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Spectrometry, Mass, Secondary Ion
19.
Hum Mutat ; 33(11): 1513-9, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22753370

ABSTRACT

The Human Variome Project (http://www.humanvariomeproject.org) is an international effort aiming to systematically collect and share information on all human genetic variation. The two main pillars of this effort are gene/disease-specific databases and a network of Human Variome Project Country Nodes. The latter are nationwide efforts to document the genomic variation reported within a specific population. The development and successful operation of the Human Variome Project Country Nodes are of utmost importance to the success of Human Variome Project's aims and goals because they not only allow the genetic burden of disease to be quantified in different countries, but also provide diagnosticians and researchers access to an up-to-date resource that will assist them in their daily clinical practice and biomedical research, respectively. Here, we report the discussions and recommendations that resulted from the inaugural meeting of the International Confederation of Countries Advisory Council, held on 12th December 2011, during the 2011 Human Variome Project Beijing Meeting. We discuss the steps necessary to maximize the impact of the Country Node effort for developing regional and country-specific clinical genetics resources and summarize a few well-coordinated genetic data collection initiatives that would serve as paradigms for similar projects.


Subject(s)
Genetic Variation , Genome, Human , Human Genome Project , Guidelines as Topic , Human Genome Project/economics , Human Genome Project/ethics , Human Genome Project/legislation & jurisprudence , Humans , International Cooperation , Registries , Software
20.
Bioconjug Chem ; 23(3): 450-60, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22284327

ABSTRACT

The local abundance of specific lipid species near a membrane protein is hypothesized to influence the protein's activity. The ability to simultaneously image the distributions of specific protein and lipid species in the cell membrane would facilitate testing these hypotheses. Recent advances in imaging the distribution of cell membrane lipids with mass spectrometry have created the desire for membrane protein probes that can be simultaneously imaged with isotope labeled lipids. Such probes would enable conclusive tests to determine whether specific proteins colocalize with particular lipid species. Here, we describe the development of fluorine-functionalized colloidal gold immunolabels that facilitate the detection and imaging of specific proteins in parallel with lipids in the plasma membrane using high-resolution SIMS performed with a NanoSIMS. First, we developed a method to functionalize colloidal gold nanoparticles with a partially fluorinated mixed monolayer that permitted NanoSIMS detection and rendered the functionalized nanoparticles dispersible in aqueous buffer. Then, to allow for selective protein labeling, we attached the fluorinated colloidal gold nanoparticles to the nonbinding portion of antibodies. By combining these functionalized immunolabels with metabolic incorporation of stable isotopes, we demonstrate that influenza hemagglutinin and cellular lipids can be imaged in parallel using NanoSIMS. These labels enable a general approach to simultaneously imaging specific proteins and lipids with high sensitivity and lateral resolution, which may be used to evaluate predictions of protein colocalization with specific lipid species.


Subject(s)
Colloids , Fluorine/chemistry , Gold/chemistry , Immunoconjugates/chemistry , Lipids/chemistry , Proteins/chemistry , Spectrometry, Mass, Secondary Ion/methods , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...