Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Behav Brain Res ; 440: 114258, 2023 02 25.
Article in English | MEDLINE | ID: mdl-36521572

ABSTRACT

Social decision-making is critically influenced by neurocircuitries that regulate stress responsiveness. Adaptive choices, therefore, are altered by stress-related neuromodulatory peptide systems, such as corticotropin releasing factor (CRF). Experimental designs that take advantage of ecologically salient fear-inducing stimuli allow for revelation of neural mechanisms that regulate the balance between pro- and anti-stress responsiveness. To accomplish this, we developed a social stress and conditioning protocol, the Stress Alternatives Model (SAM), that utilizes a simple dichotomous choice, and produces distinctive behavioral phenotypes (Escape or Stay). The experiments involve repeated social aggression, a potent unconditioned stimulus (US), from a novel larger conspecific (a 3X larger Rainbow trout). Prior to the social interaction, the smaller test fish is presented with an auditory conditioning stimulus (water off = CS). During the social aggression, an escape route is available, but is only large enough for the smaller test animal. Surprisingly, although the new aggressor provides vigorous attacks each day, only 50% of the test fish choose Escape. Stay fish, treated with the CRF1 antagonist antalarmin, a potent anxiolytic drug, on day 4, promotes Escape behavior for the last 4 days of the SAM protocol. The results suggest that the decision to Escape, required a reduction in stress reactivity. The Stay fish that chose Escape following anxiolytic treatment, learned how to use the escape route prior to stress reduction, as the Escape latency in these fish was significantly faster than first time escapers. In Escape fish, the use of the escape route is learned over several days, reducing the Escape latency over time in the SAM. Fear conditioning (water off + aggression) resulted in elevated hippocampal (DL) Bdnf mRNA levels, with coincident reduction in the AMPA receptor subunit Glua1 expression, a result that is reversed following a one-time treatment (during SAM aggression on day 4) with the anxiolytic CRF1 receptor antagonist antalarmin.


Subject(s)
Anti-Anxiety Agents , Animals , Anti-Anxiety Agents/pharmacology , Corticotropin-Releasing Hormone/metabolism , Learning , Fear/physiology , Receptors, Corticotropin-Releasing Hormone , Gene Expression
2.
Front Neurosci ; 11: 515, 2017.
Article in English | MEDLINE | ID: mdl-28966574

ABSTRACT

Socially stressful environments induce a phenotypic dichotomy of coping measures for populations in response to a dominant aggressor and given a route of egress. This submission- (Stay) or escape-oriented (Escape) dichotomy represents individual decision-making under the stressful influence of hostile social environments. We utilized the Stress-Alternatives Model (SAM) to explore behavioral factors which might predict behavioral phenotype in rainbow trout. The SAM is a compartmentalized tank, with smaller and larger trout separated by an opaque divider until social interaction, and another divider occluding a safety zone, accessible by way of an escape route only large enough for the smaller fish. We hypothesized that distinctive behavioral responses during the first social interaction would indicate a predisposition for one of the behavioral phenotypes in the subsequent interactions. Surprisingly, increased amount or intensity of aggression received had no significant effect on promoting escape in test fish. In fact, during the first day of interaction, fish that turned toward their larger opponent during attack eventually learned to escape. Escaping fish also learn to monitor the patrolling behavior of aggressors, and eventually escape primarily when they are not being observed. Escape per se, was also predicted in trout exhibiting increased movements directed toward the escape route. By contrast, fish that consistently remained in the tank with the aggressor (Stay) showed significantly higher frequency of swimming in subordinate positions, at the top or the bottom of the water column, as well as sitting at the bottom. In addition, a corticotropin-releasing factor (CRF)-induced behavior, snap-shake, was also displayed in untreated fish during aggressive social interaction, and blocked by a CRF1 receptor antagonist. Especially prevalent among the Stay phenotype, snap-shake indicates indecision regarding escape-related behaviors. Snap-shake was also exhibited by fish of the Escape phenotype, showing a positive correlation with latency to escape. These results demonstrate adaptive responses to stress that reflect evolutionarily conserved stress neurocircuitry which may translate to psychological disorders and decision-making across vertebrate taxa.

3.
Physiol Behav ; 146: 86-97, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26066728

ABSTRACT

By creating the Visible Burrow System (VBS) Bob Blanchard found a way to study the interaction of genetics, physiology, environment, and adaptive significance in a model with broad validity. The VBS changed the way we think about anxiety and affective disorders by allowing the mechanisms which control them to be observed in a dynamic setting. Critically, Blanchard used the VBS and other models to show how behavioral systems like defense are dependent upon context and behavioral elements unique to the individual. Inspired by the VBS, we developed a Stress Alternatives Model (SAM) to further explore the multifaceted dynamics of the stress response with a dichotomous choice condition. Like the VBS, the SAM is a naturalistic model built upon risk assessment and defensive behavior, but with a choice of response: escape or submission to a large conspecific aggressor. The anxiety of novelty during the first escape must be weighed against fear of the aggressor, and a decision must be made. Both outcomes are adaptively significant, evidenced by a 50/50 split in outcome across several study systems. By manipulating the variables of the SAM, we show that a gradient of anxiety exists that spans the contextual settings of escaping an open field, escaping from aggression, and submitting to aggression. These findings correspond with increasing levels of corticosterone and increasing levels of NPS and BDNF in the central amygdala as the context changes.Whereas some anxiolytics were able to reduce the latency to escape for some animals, only with the potent anxiolytic drug antalarmin (CRF1R-blocker) and the anxiogenic drug yohimbine (α2 antagonist) were we able to reverse the outcome for a substantial proportion of individuals. Our findings promote a novel method for modeling anxiety, offering a distinction between low-and-high levels, and accounting for individual variability. The translational value of the VBS is immeasurable, and it guided us and many other researchers to seek potential clinical solutions through a deeper understanding of regional neurochemistry and gene expression in concert with an ecological behavioral model.


Subject(s)
Anxiety/physiopathology , Disease Models, Animal , Social Behavior , Stress, Psychological/physiopathology , Animals , Humans , Rats , Trout
4.
J Exp Biol ; 217(Pt 15): 2680-90, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24855673

ABSTRACT

Serotonin (5-HT) inhibits aggression and modulates aspects of sexual behaviour in many species, but the mechanisms responsible are not well understood. Here, we exploited the social dominance hierarchy of Astatotilapia burtoni to understand the role of the serotonergic system in long-term maintenance of social status. We identified three populations of 5-HT cells in dorsal and ventral periventricular pretectal nuclei (PPd, PPv), the nucleus of the paraventricular organ (PVO) and raphe. Dominant males had more 5-HT cells than subordinates in the raphe, but the size of these cells did not differ between social groups. Subordinates had higher serotonergic turnover in the raphe and preoptic area (POA), a nucleus essential for hypothalamic-pituitary-gonadal (HPG) axis function. The relative abundance of mRNAs for 5-HT receptor (5-HTR) subtypes 1A and 2A (htr1a, htr2a) was higher in subordinates, a difference restricted to the telencephalon. Because social status is tightly linked to reproductive capacity, we asked whether serotonin turnover and the expression of its receptors correlated with testes size and circulating levels of 11-ketotestosterone (11-KT). We found negative correlations between both raphe and POA serotonin turnover and testes size, as well as between htr1a mRNA levels and circulating 11-KT. Thus, increased serotonin turnover in non-aggressive males is restricted to specific brain nuclei and is associated with increased expression of 5-HTR subtypes 1A and 2A exclusively in the telencephalon.


Subject(s)
Brain/metabolism , Cichlids/metabolism , Receptors, Serotonin/metabolism , Serotonin/metabolism , Social Dominance , Animals , Behavior, Animal/physiology , Brain/anatomy & histology , Hierarchy, Social , Male , RNA, Messenger/analysis , Receptors, Serotonin/genetics , Stress, Psychological/metabolism , Testis/metabolism , Testosterone/analogs & derivatives , Testosterone/metabolism , Tissue Distribution , Video Recording
5.
PLoS One ; 9(5): e96632, 2014.
Article in English | MEDLINE | ID: mdl-24824619

ABSTRACT

In social animals, hierarchical rank governs food availability, territorial rights and breeding access. Rank order can change rapidly and typically depends on dynamic aggressive interactions. Since the neuromodulator corticotrophin releasing factor (CRF) integrates internal and external cues to regulate the hypothalamic-pituitary adrenal (HPA) axis, we analyzed the CRF system during social encounters related to status. We used a particularly suitable animal model, African cichlid fish, Astatotilapia burtoni, whose social status regulates reproduction. When presented with an opportunity to rise in rank, subordinate A. burtoni males rapidly change coloration, behavior, and their physiology to support a new role as dominant, reproductively active fish. Although changes in gonadotropin-releasing hormone (GnRH1), the key reproductive molecular actor, have been analyzed during social ascent, little is known about the roles of CRF and the HPA axis during transitions. Experimentally enabling males to ascend in social rank, we measured changes in plasma cortisol and the CRF system in specific brain regions 15 minutes after onset of social ascent. Plasma cortisol levels in ascending fish were lower than subordinate conspecifics, but similar to levels in dominant animals. In the preoptic area (POA), where GnRH1 cells are located, and in the pituitary gland, CRF and CRF1 receptor mRNA levels are rapidly down regulated in ascending males compared to subordinates. In the Vc/Vl, a forebrain region where CRF cell bodies are located, mRNA coding for both CRFR1 and CRFR2 receptors is lower in ascending fish compared to stable subordinate conspecifics. The rapid time course of these changes (within minutes) suggests that the CRF system is involved in the physiological changes associated with shifts in social status. Since CRF typically has inhibitory effects on the neuroendocrine reproductive axis in vertebrates, this attenuation of CRF activity may allow rapid activation of the reproductive axis and facilitate the transition to dominance.


Subject(s)
Behavior, Animal/physiology , Cichlids/metabolism , Corticotropin-Releasing Hormone/metabolism , Hierarchy, Social , Receptors, Corticotropin-Releasing Hormone/metabolism , Territoriality , Animals , Corticotropin-Releasing Hormone/genetics , Hydrocortisone/blood , Hypothalamo-Hypophyseal System/metabolism , Male , Pituitary Gland/metabolism , Pituitary-Adrenal System/metabolism , Preoptic Area/metabolism , Prosencephalon/metabolism , Receptors, Corticotropin-Releasing Hormone/genetics
6.
Horm Behav ; 62(1): 18-26, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22561338

ABSTRACT

Feeding behavior and reproduction are coordinately regulated by the brain via neurotransmitters, circulating hormones, and neuropeptides. Reduced feeding allows animals to engage in other behaviors important for fitness, including mating and parental care. Some fishes cease feeding for weeks at a time in order to provide care to their young by brooding them inside the male or female parent's mouth. Maternal mouthbrooding is known to impact circulating hormones and subsequent reproductive cycles, but neither the full effects of food deprivation nor the neural mechanisms are known. Here we ask what effects mouthbrooding has on several physiological processes including gonad and body mass, brain neuropeptide and receptor gene expression, and circulating steroid hormones in a mouthbrooding cichlid species, Astatotilapia burtoni. We ask whether any observed changes can be explained by food deprivation, and show that during mouthbrooding, ovary size and circulating levels of androgens and estrogens match those seen during food deprivation. Levels of gonadotropin-releasing hormone 1 (GnRH1) mRNA in the brain were low in food-deprived females compared to controls and in mouthbrooding females compared to gravid females. Levels of mRNA encoding two peptides involved in regulating feeding, hypocretin and cholecystokinin, were increased in the brains of food-deprived females. Brain mRNA levels of two receptors, GnRH receptor 2 and NPY receptor Y8c, were elevated in mouthbrooding females compared to the fed condition, but NPY receptor Y8b mRNA was differently regulated by mouthbrooding. These results suggest that many, but not all, of the characteristic physiological changes that occur during mouthbrooding are consequences of food deprivation.


Subject(s)
Androgens/blood , Cichlids/metabolism , Estrogens/blood , Food Deprivation/physiology , Neuropeptides/metabolism , Ovary/metabolism , Animals , Body Weight , Brain/metabolism , Cholecystokinin/biosynthesis , Female , Gonadotropin-Releasing Hormone/biosynthesis , Gonadotropin-Releasing Hormone/metabolism , Intracellular Signaling Peptides and Proteins , Neuropeptides/biosynthesis , Orexins , Organ Size , Ovary/anatomy & histology , Protein Precursors/biosynthesis , RNA, Messenger/biosynthesis , Receptors, LHRH/biosynthesis , Receptors, Neuropeptide Y/biosynthesis , Reproduction
7.
J Comp Neurol ; 520(15): 3471-91, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22431175

ABSTRACT

New cells are added in the brains of all adult vertebrates, but fishes have some of the greatest potential for neurogenesis and gliogenesis among all taxa, partly due to their indeterminate growth. Little is known, however, about how social interactions influence cell proliferation in the brain of these fishes that comprise the largest group of vertebrates. We used 5-bromo-2'-deoxyuridine (BrdU) to identify and localize proliferation zones in the telencephalon, diencephalon, mesencephalon, and rhombencephalon that were primarily associated with ventricular surfaces in the brain of the African cichlid fish Astatotilapia burtoni. Cell migration was evident in some regions by 1 day post injection, and many newborn cells coexpressed the neuronal marker HuC/D at 30 days, suggesting they had differentiated into neurons. To test the hypothesis that social status and perception of an opportunity to rise in rank influenced cell proliferation, we compared numbers of BrdU-labeled cells in multiple brain nuclei among fish of different social status. Socially suppressed subordinate males had the lowest numbers of proliferating cells in all brain regions examined, but males that were given an opportunity to rise in status had higher cell proliferation rates within 1 day, suggesting rapid upregulation of brain mitotic activity associated with this social transition. Furthermore, socially isolated dominant males had similar numbers of BrdU-labeled cells compared with dominant males that were housed in a socially rich environment, suggesting that isolation has little effect on proliferation and that reduced proliferation in subordinates is a result of the social subordination. These results suggest that A. burtoni will be a useful model to analyze the mechanisms of socially induced neurogenesis in vertebrates.


Subject(s)
Brain/cytology , Cichlids/anatomy & histology , Hierarchy, Social , Neuronal Plasticity/physiology , Animals , Brain/physiology , Cell Proliferation , Cichlids/physiology , Male , Neurogenesis/physiology
8.
Fish Physiol Biochem ; 36(4): 933-43, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20012186

ABSTRACT

Endogenous estrogens are known to affect the activity of monoamine neurotransmitters in vertebrate animals, but the effects of exogenous estrogens on neurotransmitters are relatively poorly understood. We exposed sexually mature male fighting fish Betta splendens to environmentally relevant and pharmacological doses of three phytoestrogens that are potential endocrine disruptors in wild fish populations: genistein, equol, and ß-sitosterol. We also exposed fish to two doses of the endogenous estrogen 17ß-estradiol, which we selected as a positive control because phytoestrogens are putative estrogen mimics. Our results were variable, but the effects were generally modest. Genistein increased dopamine levels in the forebrains of B. splendens at both environmentally relevant and pharmacological doses. The environmentally relevant dose of equol increased dopamine levels in B. splendens forebrains, and the pharmacological dose decreased norepinephrine (forebrain), dopamine (hindbrain), and serotonin (forebrain) levels. The environmentally relevant dose of ß-sitosterol decreased norepinephrine and dopamine in the forebrain and hindbrain, respectively. Our results suggest that sources of environmental phytoestrogens, such as runoff or effluent from agricultural fields, wood pulp mills, and sewage treatment plants, have the potential to modulate neurotransmitter activity in free-living fishes in a way that could interfere with normal behavioral processes.


Subject(s)
Brain/metabolism , Dopamine/metabolism , Norepinephrine/metabolism , Perciformes/metabolism , Phytoestrogens/toxicity , Serotonin/metabolism , Vesicular Monoamine Transport Proteins/metabolism , Water Pollutants, Chemical/toxicity , Analysis of Variance , Animals , Chromatography, High Pressure Liquid , Equol , Genistein , Isoflavones , Male , Phytoestrogens/metabolism , Sitosterols , Water Pollutants, Chemical/metabolism
9.
Neurobiol Learn Mem ; 91(4): 415-23, 2009 May.
Article in English | MEDLINE | ID: mdl-19340951

ABSTRACT

This paper describes a model of fear learning, in which subjects have an option of behavioral responses to impending social defeat. The model generates two types of learning: social avoidance and classical conditioning, dependent upon (1) escape from or (2) social subordination to an aggressor. We hypothesized that social stress provides the impetus as well as the necessary information to stimulate dichotomous goal-oriented learning. Specialized tanks were constructed to subject rainbow trout to a conditioning paradigm where the conditioned stimulus (CS) is cessation of tank water flow (water off) and the unconditioned stimulus (US) is social aggression from a larger conspecific. Following seven daily CS/US pairings, approximately half of the test fish learned to consistently escape the aggression to a neutral chamber through a small escape hole available only during the interaction. The learning curve for escaping fish was dramatic, with an 1100% improvement in escape time over 7 days. Fish that did not escape exhibited a 400% increase in plasma cortisol and altered brain monoamine response to presentation of the CS alone. Elevated plasma cortisol levels represent classical fear conditioning in non-escaping fish, while a lack of fear conditioning and a decreased latency to escape over the training period in escapers indicates learned escape.


Subject(s)
Conditioning, Classical , Fear , Learning , Models, Psychological , 3,4-Dihydroxyphenylacetic Acid/metabolism , Amygdala/physiopathology , Analysis of Variance , Animals , Conditioning, Classical/physiology , Corpus Striatum/physiopathology , Dopamine/metabolism , Escape Reaction , Hydrocortisone/blood , Hydroxyindoleacetic Acid/metabolism , Hypothalamus/physiopathology , Learning/physiology , Oncorhynchus mykiss , Raphe Nuclei/physiopathology , Serotonin/metabolism , Social Behavior , Stress, Psychological/physiopathology
10.
Physiol Behav ; 97(3-4): 476-83, 2009 Jun 22.
Article in English | MEDLINE | ID: mdl-19345236

ABSTRACT

In a variety of vertebrates, highly aggressive individuals tend to have high social status and low serotonergic function. In the sex changing fish Lythrypnus dalli, serotonin (5-HT) may be involved as a mediator between the social environment and the reproductive system because social status is a critical cue in regulating sex change. Subordination inhibits sex change in L. dalli, and it is associated with higher serotonergic activity in other species. We tested the hypothesis that high serotonergic activity has an inhibitory effect on sex change. In a social situation permissive to sex change, we administered to the dominant female implants containing the serotonin precursor 5-hydroxytryptophan (5-HTP). In a social situation not conducive to sex change, we administered either the serotonin synthesis inhibitor p-chlorophenylalanine (PCPA) or the 5-HT(1A) receptor antagonist p-MPPI. After three weeks we used HPLC to measure brain levels of 5-HT and its metabolite 5-hydroxyindoleacetic acid (5-HIAA). We also performed PCPA, p-MPPI and fluoxetine injections in size-matched pairs of females to assess its effect on dominance status. Males and newly sex changed fish showed a trend for higher levels of 5-HIAA and 5-HT/5-HIAA ratio than females. The different implants treatments did not affect the probability of sex change. Interestingly, this species does not seem to fit the pattern seen in other vertebrates where dominant individuals have lower serotonergic activity than subordinates.


Subject(s)
Fishes/physiology , Hermaphroditic Organisms , Hierarchy, Social , Serotonin/metabolism , Sex Determination Processes , Sexual Behavior, Animal/physiology , Social Behavior , 5-Hydroxytryptophan/pharmacology , Aminopyridines/pharmacology , Analysis of Variance , Animals , Chromatography, High Pressure Liquid/methods , Female , Fenclonine/pharmacology , Fluoxetine/pharmacology , Hydroxyindoleacetic Acid/metabolism , Linear Models , Male , Piperazines/pharmacology , Serotonin Antagonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Sexual Behavior, Animal/drug effects
11.
Horm Behav ; 52(5): 600-11, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17826776

ABSTRACT

Corticotropin releasing factor (CRF) and serotonin (5-HT) are strongly linked to stress and anxiety in vertebrates. As a neuromodulator in the brain, CRF has anxiogenic properties often characterized by increased locomotion and stereotyped behavior in familiar environments. We hypothesized that expression of anxiogenic behavior in response to CRF will also be exhibited in a teleost fish. Rainbow trout were treated with intracerebroventricular (icv) injections of artificial cerebrospinal fluid (aCSF), 500 or 2000 ng ovine CRF, or not injected. Treatment with either dose of CRF elicited greater locomotion and pronounced head shaking behavior but did not influence water column position. Locomotor and head shaking behaviors may be analogous to the increased stereotypy evoked by icv CRF in rats and may reflect the expression of stress/anxiety behavior. Injection with either aCSF or CRF produced significant increases in plasma cortisol. The absence of behavioral changes in aCSF-injected fish suggests that the behavioral responses following CRF were not due to cortisol. Treatment with 2000 ng CRF significantly increased serotonin, 5-HIAA and dopamine concentrations in the subpallium and raphé and increased 5-HIAA in the preoptic hypothalamus (POA). Concurrent effects of CRF on central monoamines, locomotion and head shaking in trout suggest that anxiogenic properties of CRF are evolutionarily conserved. In addition, positive linear correlations between locomotion and serotonergic and dopaminergic function in the subpallium, POA and raphé nuclei suggest a locomotory function for these monoamines.


Subject(s)
Anxiety/chemically induced , Corticotropin-Releasing Hormone/pharmacology , Locomotion/drug effects , Neurons/drug effects , Trout/physiology , Animals , Behavior, Animal/drug effects , Brain/drug effects , Brain/metabolism , Brain/physiology , Corticotropin-Releasing Hormone/administration & dosage , Dopamine/metabolism , Hydrocortisone/metabolism , Injections, Intraventricular , Neurons/metabolism , Neurons/physiology , Serotonin/metabolism , Trout/metabolism
12.
Pharmacol Biochem Behav ; 87(2): 222-31, 2007.
Article in English | MEDLINE | ID: mdl-17553555

ABSTRACT

The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.


Subject(s)
Aggression/drug effects , Fishes/physiology , Receptor, Serotonin, 5-HT1A/drug effects , Serotonin/pharmacology , 3,4-Dihydroxyphenylacetic Acid/metabolism , 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology , Aggression/physiology , Animals , Diet , Dopamine/metabolism , Fenclonine/pharmacology , Fluoxetine/pharmacology , Hydroxyindoleacetic Acid/metabolism , Injections, Intramuscular , Male , Piperazines/pharmacology , Pyridines/pharmacology , Serotonin/administration & dosage , Serotonin/metabolism , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Tryptophan/pharmacology
13.
Eur J Pharmacol ; 526(1-3): 21-35, 2005 Dec 05.
Article in English | MEDLINE | ID: mdl-16298361

ABSTRACT

Socially aggressive interaction is stressful, and as such, glucocorticoids are typically secreted during aggressive interaction in a variety of vertebrates, which may both potentiate and inhibit aggression. The behavioral relationship between corticosterone and/or cortisol in non-mammalian (as well as mammalian) vertebrates is dependent on timing, magnitude, context, and coordination of physiological and behavioral responses. Chronically elevated plasma glucocorticoids reliably inhibit aggressive behavior, consistent with an evolutionarily adaptive behavioral strategy among subordinate and submissive individuals. Acute elevation of plasma glucocorticoids may either promote an actively aggressive response via action in specialized local regions of the brain such as the anterior hypothalamus, or is permissive to escalated aggression and/or activity. Although the permissive effect of glucocorticoids on aggression does not suggest an active role for the hormone, the corticosteroids may be necessary for full expression of aggressive behavior, as in the lizard Anolis carolinensis. These effects suggest that short-term stress may generally be best counteracted by an actively aggressive response, at least for socially dominant proactive individuals. An acute and active response may be evolutionarily maladaptive under chronic, uncontrollable and unpredictable circumstances. It appears that subordinate reactive individuals often produce compulsorily chronic responses that inhibit aggression and promote submissive behavior.


Subject(s)
Aggression/physiology , Glucocorticoids/physiology , Aggression/psychology , Animals , Lizards , Neurotransmitter Agents/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...