Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Proced Online ; 25(1): 27, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932658

ABSTRACT

BACKGROUND: Arthropods transmit a wide range of pathogens of importance for the global health of humans, animals, and plants. One group of these arthropod vectors, Culicoides biting midges (Diptera: Ceratopogonidae), is the biological vector of several human and animal pathogens, including economically important livestock viruses like bluetongue virus (BTV). Like other arthropod-borne viruses (arboviruses), Culicoides-borne viruses must reach and replicate in the salivary apparatus, from where they can be transmitted to susceptible hosts through the saliva during subsequent blood feeding. Despite the importance of the salivary gland apparatus for pathogen transmission to susceptible animals from the bite of infected Culicoides, these structures have received relatively little attention, perhaps due to the small size and fragility of these vectors. RESULTS: In this study, we developed techniques to visualize the infection of the salivary glands and other soft tissues with BTV, in some of the smallest known arbovirus vectors, Culicoides biting midges, using three-dimensional immunofluorescence confocal microscopy. We showed BTV infection of specific structures of the salivary gland apparatus of female Culicoides vectors following oral virus uptake, related visualisation of viral infection in the salivary apparatus to high viral RNA copies in the body, and demonstrated for the first time, that the accessory glands are a primary site for BTV replication within the salivary apparatus. CONCLUSIONS: Our work has revealed a novel site of virus-vector interactions, and a novel role of the accessory glands of Culicoides in arbovirus amplification and transmission. Our approach would also be applicable to a wide range of arbovirus vector groups including sand flies (Diptera: Psychodidae), as well as provide a powerful tool to investigate arbovirus infection and dissemination, particularly where there are practical challenges in the visualization of small size and delicate tissues of arthropods.

2.
Vet Rec ; 187(11): e96, 2020 Nov 28.
Article in English | MEDLINE | ID: mdl-32917835

ABSTRACT

BACKGROUND: Bluetongue (BT) is a viral disease of ruminants and camelids which can have a significant impact on animal health and welfare and cause severe economic loss. The UK has been officially free of bluetongue virus (BTV) since 2011. In 2015, BTV-8 re-emerged in France and since then BTV has been spreading throughout Europe. In response to this outbreak, risk-based active surveillance was carried out at the end of the vector seasons in 2017 and 2018 to assess the risk of incursion of BTV into Great Britain. METHOD: Atmospheric dispersion modelling identified counties on the south coast of England at higher risk of an incursion. Blood samples were collected from cattle in five counties based on a sample size designed to detect at least one positive if the prevalence was 5 per cent or greater, with 95 per cent confidence. RESULTS: No virus was detected in the 478 samples collected from 32 farms at the end of the 2017 vector season or in the 646 samples collected from 43 farms at the end of the 2018 vector season, when tested by RT-qPCR. CONCLUSION: The negative results from this risk-based survey provided evidence to support the continuation of the UK's official BTV-free status.


Subject(s)
Bluetongue/epidemiology , Cattle Diseases/epidemiology , Sentinel Surveillance/veterinary , Animals , Bluetongue virus/genetics , Bluetongue virus/isolation & purification , Cattle , Cross-Sectional Studies , England/epidemiology , Real-Time Polymerase Chain Reaction/veterinary , Risk Assessment
4.
Ticks Tick Borne Dis ; 4(4): 329-33, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23545323

ABSTRACT

Lumpy skin disease (LSD) is an economically important acute or sub-acute disease of cattle that occurs across Africa and in the Middle East. The aim of this study was to assess whether Rhipicephalus decoloratus ticks were able to transmit lumpy skin disease virus (LSDV) transovarially. Uninfected, laboratory-bred R. decoloratus larvae were placed to feed on experimentally infected "donor" cattle. After completion of the life cycle on donor animals, fully engorged adult female ticks were harvested and allowed to lay eggs. Larvae that hatched from these eggs were then transferred to feed on uninfected "recipient" cattle. The latter became viraemic and showed mild clinical disease with characteristic skin lesions and markedly enlarged precrural and subscapular lymph nodes. This is the first report of transovarial transmission of poxviruses by R. decoloratus ticks, and the importance of this mode of transmission in the spread of LSDV in endemic settings requires further investigation.


Subject(s)
Lumpy Skin Disease/transmission , Lumpy skin disease virus/physiology , Rhipicephalus/classification , Rhipicephalus/virology , Animals , Cattle , Female , Larva/virology , Lumpy Skin Disease/virology
5.
J Med Entomol ; 49(3): 757-65, 2012 May.
Article in English | MEDLINE | ID: mdl-22679886

ABSTRACT

Truck trap collections of Culicoides biting midges (Diptera: Ceratopogonidae) were made during 2 yr of sampling from 2008 to 2009 at a farm site in southern England. Samples were collected from 810 sample runs carried out over 52 d and contained 7,095 Culicoides of which more than half (50.3%) were identified as Culicoides obsoletus Meigen by using a multiplex polymerase chain reaction assay. Other commonly encountered species included Culicoides scoticus Downes & Kettle (14.7% of total Culicoides caught), Culicoides dewulfi Goetghebuer (3.7%), and Culicoides chiopterus Meigen (4.2%). The activity rates of these species were examined with regard to both meteorological factors (light intensity, humidity, temperature, and wind speed and direction) and other potentially contributing variables (lunar phase and brightness, sunset time, and year) by using generalized linear models. All the species examined were collected in greater abundance at sunset, although the relationship between underlying light intensity and numbers was less pronounced in C. dewulfi and C. chiopterus. Collections of Culicoides were reduced at temperatures above 21 degrees C and were inversely related to wind speed. Variation between species was recorded, however, in response to wind direction: C. dewulfi and C. chiopterus were associated with prevailing winds passing through fields containing livestock, whereas C. obsoletus and C. scoticus demonstrated no such relationship. A male:female ratio of 1:3.56 was observed in catches, and male populations were protandrous. These results are discussed with reference both to the ecology of these species and methods currently used to predict adult Culicoides movement and abundance in Europe.


Subject(s)
Ceratopogonidae , Circadian Rhythm , Animals , Environmental Monitoring , Female , Male , Seasons , United Kingdom , Weather
6.
J Med Entomol ; 45(1): 129-32, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18283953

ABSTRACT

A TissueLyser system (QIAGEN) was used to rapidly and accurately estimate bluetongue virus "loads" in individual adult Culicoides sonorensis Wirth & Jones (Diptera: Ceratopogonidae). The optimized homogenization program that was developed, involved shaking insects for 1 min at 25 Hz with 2- or 3-mm stainless steel ball bearings. This program was used to measure the quantities of bluetongue virus present in insects that had either been inoculated or had ingested a viremic bloodmeal through an artificial membrane. The virus titers obtained using either infection technique and the optimized program did not differ significantly from those obtained using a polypropylene motor-driven pestle, a method that is currently in common use for studies of vector competence). The advantages of the new method, as a rapid means of detecting fully disseminated infections in individual field-caught flies, are discussed. Its use is compared with the processing of pools of Culicoides by conventional methods, where the extent of dissemination of the virus is unknown and could wrongly implicate species that are of low importance in transmission.


Subject(s)
Bluetongue virus/isolation & purification , Ceratopogonidae/virology , Animals , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...