Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 16(5): 972-980, 2022 10.
Article in English | MEDLINE | ID: mdl-36074865

ABSTRACT

This paper demonstrates hybrid sub-aperture beamforming (SAB) with time-division multiplexing (TDM) for massive interconnect reduction in ultrasound imaging systems. A single-chip front-end system prototype has been fabricated in 180-nm HV BCD technology that combines 5×1 SAB with 8×1 TDM to efficiently reduce the number of receive signal interconnects by a factor of 40. The system includes on-chip high-voltage (HV) pulsers capable of generating unipolar pulses up to 70 V in transmit (TX) mode. The receiver (RX) chain consists of a T/R switch, a variable-gain low-noise amplifier (VG-LNA) with 4-step gain control (15-32 dB) for time-gain compensation followed by a programmable switched-capacitor analog delay-and-sum beamformer. The proof-of-concept prototype operates at a 200-MHz clock frequency and the SAB provides 32-step fine delays with a maximum delay of 310 ns corresponding to better than λ/20 delay quantization at 5 MHz. With these specifications, the SAB is capable of beam steering from 0 ° to 45 ° for a 5-element subarray with 150-micron pitch ( λ/2), providing a near-ideal phased array imaging performance. The sub-aperture beamformer is followed by the TDM system where each of the 8 channels is sampled at a rate of 25 MS/s after an anti-aliasing bandpass filter. The full functionality of the prototype chip is validated through electrical and acoustic measurements on a 1-D capacitive micromachined ultrasonic transducer (CMUT) array designed for intracardiac echocardiography (ICE).


Subject(s)
Amplifiers, Electronic , Transducers , Phantoms, Imaging , Equipment Design , Ultrasonography/methods
2.
IEEE Trans Biomed Circuits Syst ; 15(2): 270-280, 2021 04.
Article in English | MEDLINE | ID: mdl-33750714

ABSTRACT

High-Intensity Focused Ultrasound (HIFU) therapy provides a non-invasive technique with which to destroy cancerous tissue without using ionizing radiation. To drive large single-element High-Intensity Focused Ultrasound (HIFU) transducers, ultrasound transmitters capable of delivering high powers at relevant frequencies are required. The acoustic power delivered to a transducers focal region will determine the treated area, and due to safety concerns and intervening layers of attenuation, control of this output power is critical. A typical setup involves large inefficient linear power amplifiers to drive the transducer. Switched mode transmitters allow for a more compact drive system with higher efficiencies, with multi-level transmitters allowing control over the output power. Real-time monitoring of power delivered can avoid damage to the transducer and injury to patients due to over treatment, and allow for precise control over the output power. This study demonstrates a transformer-less, high power, switched mode transmit transmitter based on Gallium-Nitride (GaN) transistors that is capable of delivering peak powers up to 1.8 kW at up to 600 Vpp, while operating at frequencies from DC to 5 MHz. The design includes a 12 b 16 MHz floating Current/Voltage (IV) measurement circuit to allow real-time high-side monitoring of the power delivered to the transducer allowing use with multi-element transducers.


Subject(s)
Gallium , High-Intensity Focused Ultrasound Ablation , Humans , Transducers , Ultrasonography
3.
Article in English | MEDLINE | ID: mdl-31514135

ABSTRACT

During high-intensity focused ultrasound (HIFU) therapy, it is important that the electrical power delivered to the transducer is monitored to avoid underexposure or overexposure, ensure patient safety, and to protect the transducer itself. Due to ease of measurement, the transducer's potential difference may be as an indicator of power delivery. However, even when a transducer's complex impedance is well characterized at small amplitudes and matching networks are used, voltage-only (VO) monitoring cannot account for the presence of drive waveform distortion, changes to the acoustic path, or damage to the transducer. In this study, combined current and voltage (CCV) is proposed as a magnetic resonance imaging (MRI)-compatible, miniature alternative to bidirectional power couplers, which is compatible with switched amplifiers. For CCV power measurement, current probe data were multiplied by the voltage waveform and integrated in the frequency domain. Transducer efficiency was taken into account to predict acoustic power. The technique was validated with a radiation force balance (RFB). When using a typical HIFU transducer and amplifier, VO predictions and acoustic power had a maximum difference of 20%. However, under the same conditions, CCV only had a maximum difference of 5%. The technique was applied to several lesioning experiments and it was shown that when VO was used as a control between two amplifiers, there was up to a 38% difference in lesion area. This greatly reduced to a maximum of 5% once CCV was used instead. These results demonstrate that CCV can accurately predict real-time electrical power delivery, leading to safer HIFU treatments.


Subject(s)
High-Intensity Focused Ultrasound Ablation , Transducers , Acoustics , Animals , Chickens , Electricity , Equipment Design , High-Intensity Focused Ultrasound Ablation/instrumentation , High-Intensity Focused Ultrasound Ablation/methods , High-Intensity Focused Ultrasound Ablation/standards , Magnetic Resonance Imaging/instrumentation , Magnetic Resonance Imaging/methods , Models, Biological , Muscle, Skeletal/radiation effects , Reproducibility of Results
4.
IEEE Sens J ; 19(24): 12050-12058, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-34079429

ABSTRACT

A combined supply-inverted bipolar pulser and a Tx/Rx switch is proposed to drive capacitive micromachined ultrasonic transducers (CMUTs). The supply-inverted bipolar pulser adopts a bootstrap circuit combined with stacked transistors, which guarantees high voltage (HV) operation above the process limit without lowering device reliability. This circuit generates an output signal with a peak-to-peak voltage that is almost twice the supply level. It generates a bipolar pulse with only positive supply voltages. The Tx/Rx switch adopts a diode-bridge structure with the protection scheme dedicated to this proposed pulser. A proof- of-concept ASIC prototype has been implemented in 0.18-µm HV CMOS/DMOS technology with 60 V devices. Measurement results show that the proposed pulser can safely generate a bipolar pulse of -34.6 to 45 V, from a single 45 V supply voltage. The Tx/Rx switch blocks the HV bipolar pulse, resulting in less than 1.6 V at the input of the receiver. Acoustic measurements are performed connecting the pulser to CMUTs with 2 pF capacitance and 8 MHz center frequency. The variation of acoustic output pressures for different pulse shapes were simulated with the large signal CMUT model and compared with the experimental results for transmit pressure optimization. A potential implementation of the methods using MEMS fabrication methods is also described.

5.
Article in English | MEDLINE | ID: mdl-30575531

ABSTRACT

Combining diverging ultrasound waves and microbubbles could improve contrast-enhanced echocardiography (CEE), by providing enhanced temporal resolution for cardiac function assessment over a large imaging field of view. However, current image formation techniques using coherent summation of echoes from multiple steered diverging waves (DWs) are susceptible to tissue and microbubble motion artifacts, resulting in poor image quality. In this study, we used correlation-based 2-D motion estimation to perform motion compensation for CEE using DWs. The accuracy of this motion estimation method was evaluated with Field II simulations. The root-mean-square velocity errors were 5.9% ± 0.2% and 19.5% ± 0.4% in the axial and lateral directions, when normalized to the maximum value of 62.8 cm/s which is comparable to the highest speed of blood flow in the left ventricle (LV). The effects of this method on image contrast ratio (CR) and contrast-to-noise ratio (CNR) were tested in vitro using a tissue mimicking rotating disk with a diameter of 10 cm. Compared against the control without motion compensation, a mean increase of 12 dB in CR and 7 dB in CNR were demonstrated when using this motion compensation method. The motion correction algorithm was tested in vivo on a CEE data set acquired with the Ultrasound Array Research Platform II performing coherent DW imaging. Improvement of the B-mode and contrast-mode image quality with cardiac motion and blood flow-induced microbubble motion was achieved. The results of motion estimation were further processed to interpret blood flow in the LV. This allowed for a triplex cardiac imaging technique, consisting of B mode, contrast mode, and 2-D vector flow imaging with a high frame rate of 250 Hz.


Subject(s)
Echocardiography/methods , Image Processing, Computer-Assisted/methods , Heart/diagnostic imaging , Humans , Microbubbles , Models, Cardiovascular , Phantoms, Imaging
6.
IEEE Trans Biomed Circuits Syst ; 12(6): 1246-1255, 2018 12.
Article in English | MEDLINE | ID: mdl-30452379

ABSTRACT

This paper presents a single chip reduced-wire active catheter application-specific integrated circuit (ASIC), equipped with programmable transmit (Tx) beamforming and receive (Rx) time-division multiplexing (TDM). The proposed front-end ASIC is designed for driving a 64-channel one-dimensional transducer array in intracardiac echocardiography (ICE) ultrasound catheters. The ASIC is implemented in 60 V 0.18-µm HV-BCD technology, integrating Tx beamformers with high voltage pulsers and Rx front end in the same chip, which occupies 2.6 × 11 mm2 that can fit in the catheter size of 9 F (<3 mm). The proposed system reduces the number of wires from >64 to only 22 by integrating Tx beamformer that is programmable using a single low-voltage differential signaling data line. In Rx mode, the system uses 8:1 TDM with direct digital demultiplexing providing raw channel data that enables dynamic Rx beamforming using individual array elements. This system has been successfully used for B-mode imaging on standard ultrasound phantom with 401 mW of average power consumption. The ASIC has a compact element pitch-matched layout, which is also compatible with capacitive micromachined ultrasound transducer on CMOS application. This system addresses cable number and dimensional restrictions in catheters to enable ICE imaging under magnetic resonance imaging by reducing radio frequency induced heating.


Subject(s)
Transducers , Echocardiography/instrumentation , Equipment Design , Phantoms, Imaging
7.
Article in English | MEDLINE | ID: mdl-30371363

ABSTRACT

Switched excitation has the potential to improve on the cost, efficiency, and size of the linear amplifier circuitry currently used in high-intensity focused ultrasound (HIFU) systems. Existing switching schemes are impaired by high harmonic distortion or lack array apodisation capability, so require adjustable supplies and/or large power filters to be useful. A multilevel pulsewidth modulation (PWM) topology could address both of these issues but the switching-speed limitations of transistors mean that there are a limited number of pulses available in each waveform cycle. In this study, harmonic reduction PWM (HRPWM) is proposed as an algorithmic solution to the design of switched waveforms. Its appropriateness for HIFU was assessed by design of a high power five-level unfiltered amplifier and subsequent thermal-only lesioning of ex vivo chicken breast. Three switched waveforms of different electrical powers (16, 26, 35 W) were generated using the HRPWM algorithm. Lesion sizes were measured and compared with those made at the same electrical power using a linear amplifier and bi-level excitation. HRPWM produced symmetric, thermal-only lesions that were the same size as their linear amplifier equivalents ( ). At 16 W, bi-level excitation produced smaller lesions but at higher power levels large transients in the acoustic waveform nucleated undesired cavitation. These results demonstrate that HRPWM can minimize HIFU drive circuity size without the need for filters to remove harmonics or adjustable power supplies to achieve array apodisation.


Subject(s)
High-Intensity Focused Ultrasound Ablation/instrumentation , High-Intensity Focused Ultrasound Ablation/methods , Signal Processing, Computer-Assisted/instrumentation , Algorithms , Animals , Chickens , Miniaturization , Muscle, Skeletal/surgery , Phantoms, Imaging
8.
Article in English | MEDLINE | ID: mdl-29969392

ABSTRACT

The capability of accumulating microbubbles using ultrasound could be beneficial for enhancing targeted drug delivery. When microbubbles are used to deliver a therapeutic payload, there is a need to track them, for a localized release of the payload. In this paper, a method for localizing microbubble accumulation with fast image guidance is presented. A linear array transducer performed trapping of microbubble populations interleaved with plane wave imaging, through the use of a composite pulse sequence. The acoustic trap in the pressure field was created parallel with the direction of flow in a model of a vessel section. The acoustic trapping force resultant from the large gradients in the acoustic field was engendered to directly oppose the flowing microbubbles. This was demonstrated numerically with field simulations, and experimentally using an Ultrasound Array Research Platform II. SonoVue microbubbles at clinically relevant concentrations were pumped through a tissue-mimicking flow phantom and exposed to either the acoustic trap or a control ultrasonic field composed of a single-peak acoustic radiation force beam. Under the flow condition at a shear rate of 433 s-1, the use of the acoustic trap led to lower speed estimations ( ) in the center of the acoustic field, and an enhancement of 71% ± 28%( ) in microbubble image brightness.

9.
Article in English | MEDLINE | ID: mdl-28113930

ABSTRACT

Control over the direction of wave propagation allows an engineer to spatially locate defects. When imaging with longitudinal waves, time delays can be applied to each element of a phased array transducer to steer a beam. Because of the highly dispersive nature of guided waves (GWs), this beamsteering approach is suboptimal. More appropriate time delays can be chosen to direct a GW if the dispersion relation of the material is known. Existing techniques, however, need a priori knowledge of material thickness and acoustic velocity, which change as a function of temperature and strain. The scheme presented here does not require prior knowledge of the dispersion relation or properties of the specimen to direct a GW. Initially, a GW is generated using a single element of an array transducer. The acquired waveforms from the remaining elements are then processed and retransmitted, constructively interfering with the wave as it travels across the spatial influence of the transducer. The scheme intrinsically compensates for the dispersion of the waves, and thus can adapt to changes in material thickness and acoustic velocity. The proposed technique is demonstrated in simulation and experimentally. Dispersion curves from either side of the array are acquired to demonstrate the scheme's ability to direct a GW in an aluminum plate. The results show that unidirectional enhancement is possible without a priori knowledge of the specimen using an arbitrary pitch array transducer. The experimental results show a 34-dB enhancement in one direction compared with the other.


Subject(s)
Models, Theoretical , Transducers , Ultrasonic Waves , Ultrasonics/instrumentation , Computer Simulation , Oils/chemistry , Ultrasonography , Water/chemistry
10.
Article in English | MEDLINE | ID: mdl-27116738

ABSTRACT

In real-time catheter-based 3-D ultrasound imaging applications, gathering data from the transducer arrays is difficult, as there is a restriction on cable count due to the diameter of the catheter. Although area and power hungry multiplexing circuits integrated at the catheter tip are used in some applications, these are unsuitable for use in small sized catheters for applications, such as intracardiac imaging. Furthermore, the length requirement for catheters and limited power available to on-chip cable drivers leads to limited signal strength at the receiver end. In this paper, an alternative approach using analog time-division multiplexing (TDM) is presented, which addresses the cable restrictions of ultrasound catheters. A novel digital demultiplexing technique is also described, which allows for a reduction in the number of analog signal processing stages required. The TDM and digital demultiplexing schemes are demonstrated for an intracardiac imaging system that would operate in the 4- to 11-MHz range. A TDM integrated circuit (IC) with an 8:1 multiplexer is interfaced with a fast analog-to-digital converter (ADC) through a microcoaxial catheter cable bundle, and processed with a field-programmable gate array register-transfer level simulation. Input signals to the TDM IC are recovered with -40-dB crosstalk between the channels on the same microcoax, showing the feasibility of this system for ultrasound imaging applications.


Subject(s)
Signal Processing, Computer-Assisted/instrumentation , Ultrasonography/instrumentation , Ultrasonography/methods , Catheters , Equipment Design , Semiconductors , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...