Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Mol Cell Endocrinol ; 555: 111725, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35868425

ABSTRACT

The pancreatic ß cells circadian clock plays a relevant role in glucose metabolism. NADPH oxidase (NOX) family is responsible for producing reactive oxygen species (ROS), such as superoxide anion and hydrogen peroxide, using NADPH as an electron donor. In pancreatic ß-cells, NOX-derived ROS inhibits basal and glucose-stimulated insulin secretion. Thus, we hypothesized that the absence of BMAL1, a core circadian clock component, could trigger an increase of NOX2-derived ROS in pancreatic ß cells, inhibiting insulin secretion under basal and stimulated glucose conditions. To test such hypothesis, Bmal1 knockdown (KD) was performed in cultured clonal ß-cell line (INS-1E) and knocked out in isolated pancreatic islets, using a tissue-specific ß-cells Bmal1 knockout (KO) mice. The insulin secretion was assessed in the presence of NOX inhibitors. The Bmal1 KD within INS-1E cells elicited a rise of intracellular ROS content under both glucose stimuli (2.8 mM and 16.7 mM), associated with an increase in Nox2 expression. Additionally, alterations of glutathione levels, CuZnSOD and catalase activities, reduction of ATP/ADP ratio, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and aconitase activities, followed by glucokinase and Slc2a2 (Glut2) expression were also observed in INS-1E ß-cells, reflecting in a diminished insulin secretion pattern. The isolated islets from ß-cell Bmal1-/- mice have shown a similar cellular response, where an increased NOX2-derived ROS content and a reduced basal- and glucose-stimulated insulin secretion were observed. Therefore, together with NOX inhibition (Apocynin), polyethene-glycol linked to superoxide dismutase (PEG-SOD), phorbol myristate acetate (PMA), and diethyldithiocarbamate (DDC) data, our findings suggest a possible BMAL1-mediated NOX2-derived ROS generation in pancreatic ß cells, leading to the modulation of both basal- and glucose-stimulated insulin secretion.


Subject(s)
Insulin-Secreting Cells , ARNTL Transcription Factors , Animals , Glucose , Insulin , Insulin Secretion , Mice , NADPH Oxidases , Reactive Oxygen Species
2.
Front Endocrinol (Lausanne) ; 13: 881236, 2022.
Article in English | MEDLINE | ID: mdl-35669687

ABSTRACT

Obesity is mainly caused by excess energy intake and physical inactivity, and the number of overweight/obese individuals has been steadily increasing for decades. Previous studies showed that rodents fed westernized diets exhibit endocrine pancreas deterioration and a range of metabolic disorders. This study evaluated the effects of moderated aerobic treadmill exercise training on pancreatic islet cell viability and function in mice consuming a high-fat and sucrose diet. In the present study, 60-day-old male C57BL/6J mice were divided into four groups: control (C), fed a standard diet AIN-93M (3.83 kcal/g; 70% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate for the AIN-93 diet. In addition, a small amount of sucrose), 20% protein (casein), and 10% fat (soybean) with no training (i.e., sedentary); C + training (CTR, fed the standard diet with eight weeks of exercise; high-fat diet + sucrose (HFDS), fed a high fat and sucrose diet (5.2 kcal/g; 20% carbohydrate (cornstarch and dextrinized starch were chosen as the major source of carbohydrate), 20% protein (casein), 60% fat (Lard was chosen as the major source of fat and a small amount of soybean) + 20% sucrose diluted in drinking water with no training; and HFDS + training (HFDSTR). After eight weeks, the HFDS mice displayed increased body weight (P<0.001) and epididymal, inguinal and retroperitoneal adipose tissue mass (P<0.01). These mice also presented insulin resistance (P<0.01), glucose intolerance (P<0.001), impaired glucose-stimulated insulin secretion (GSIS) and were less responsive to the physiological net ROS production induced by glucose stimulus. The HFDS group's pancreatic islet cells were 38% less viable and 59% more apoptotic than those from the C group (P<0.05). The HFDSTR improved glucose tolerance, body mass, insulin sensitivity and GSIS (P<0.05). Furthermore, HFDSTR mice had 53% more viable isolated pancreatic islets cells and 29% fewer apoptotic cells than the HFDS group (P<0.01). Thus, exercise training may slow down and/or prevent adverse metabolic effects associated with consuming a westernized diet.


Subject(s)
Insulin Resistance , Islets of Langerhans , Animals , Caseins/metabolism , Diet, High-Fat/adverse effects , Glucose/metabolism , Insulin/metabolism , Insulin Resistance/physiology , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Obesity/prevention & control , Starch , Sucrose/metabolism
3.
J Biochem Mol Toxicol ; 36(5): e23007, 2022 May.
Article in English | MEDLINE | ID: mdl-35199402

ABSTRACT

Metformin is the first-line drug to treat type 2 diabetes mellitus. Its mechanism of action is still debatable, and recent studies report that metformin attenuates oxidative stress. This study evaluated the in vitro antioxidant effects of a broad range of metformin concentrations on insulin-producing cells. The cell cycle, metabolism, glucose-stimulated insulin secretion, and cell death were evaluated to determine the biguanide effects on beta-cell function and survival. Antioxidant potential was based on reactive oxygen species (ROS), reduced glutathione (GSH), oxidative stress biomarker levels, and antioxidant enzyme and transcriptional factor Nrf2 activities. The results demonstrate that metformin disrupted GSIS in a concentration-dependent manner, lowered insulin content, and attenuated beta-cell metabolism. At high concentrations, metformin induced cell death and cell cycle arrest as well as increased ROS generation, consequently reducing GSH content. Although carbonylated protein content was elevated, indicating oxidative stress, the antioxidant enzyme and Nrf2 activities were not altered. In conclusion, our results show that metformin disrupts pancreatic beta-cell functionality but does not exert a putative antioxidant effect. It is important to note that the drug could potentially affect beta-cells, especially at high circulating levels.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Metformin , Animals , Antioxidants/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Metformin/pharmacology , Metformin/therapeutic use , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats , Reactive Oxygen Species/metabolism
4.
Cells ; 10(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34943836

ABSTRACT

A high caloric intake, rich in saturated fats, greatly contributes to the development of obesity, which is the leading risk factor for type 2 diabetes (T2D). A persistent caloric surplus increases plasma levels of fatty acids (FAs), especially saturated ones, which were shown to negatively impact pancreatic ß-cell function and survival in a process called lipotoxicity. Lipotoxicity in ß-cells activates different stress pathways, culminating in ß-cells dysfunction and death. Among all stresses, endoplasmic reticulum (ER) stress and oxidative stress have been shown to be strongly correlated. One main source of oxidative stress in pancreatic ß-cells appears to be the reactive oxygen species producer NADPH oxidase (NOX) enzyme, which has a role in the glucose-stimulated insulin secretion and in the ß-cell demise during both T1 and T2D. In this review, we focus on the acute and chronic effects of FAs and the lipotoxicity-induced ß-cell failure during T2D development, with special emphasis on the oxidative stress induced by NOX, the ER stress, and the crosstalk between NOX and ER stress.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Endoplasmic Reticulum Stress , Insulin-Secreting Cells/pathology , Lipids/toxicity , NADPH Oxidases/metabolism , Oxidative Stress , Animals , Endoplasmic Reticulum Stress/drug effects , Humans , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Lipids/chemistry , Oxidative Stress/drug effects
5.
Antioxidants (Basel) ; 10(8)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34439552

ABSTRACT

In type 1 diabetes (T1D) development, proinflammatory cytokines (PIC) released by immune cells lead to increased reactive oxygen species (ROS) production in ß-cells. Nonetheless, the temporality of the events triggered and the role of different ROS sources remain unclear. Isolated islets from C57BL/6J wild-type (WT), NOX1 KO and NOX2 KO mice were exposed to a PIC combination. We show that cytokines increase O2•- production after 2 h in WT and NOX1 KO but not in NOX2 KO islets. Using transgenic mice constitutively expressing a genetically encoded compartment specific H2O2 sensor, we show, for the first time, a transient increase of cytosolic/nuclear H2O2 in islet cells between 4 and 5 h during cytokine exposure. The H2O2 increase coincides with the intracellular NAD(P)H decrease and is absent in NOX2 KO islets. NOX2 KO confers better glucose tolerance and protects against cytokine-induced islet secretory dysfunction and death. However, NOX2 absence does not counteract the cytokine effects in ER Ca2+ depletion, Store-Operated Calcium Entry (SOCE) increase and ER stress. Instead, the activation of ER stress precedes H2O2 production. As early NOX2-driven ROS production impacts ß-cells' function and survival during insulitis, NOX2 might be a potential target for designing therapies against early ß-cell dysfunction in the context of T1D onset.

6.
J Pineal Res ; 71(1): e12717, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33460489

ABSTRACT

The endocrine pancreas of pregnant rats shows evident plasticity, which allows the morphological structures to return to the nonpregnant state right after delivery. Furthermore, it is well-known the role of melatonin in the maintenance of the endocrine pancreas and its tropism. Studies indicate increasing nocturnal serum concentrations of maternal melatonin during pregnancy in both humans and rodents. The present study investigated the role of melatonin on energy metabolism and in pancreatic function and remodeling during pregnancy and early lactation in rats. The results confirm that the absence of melatonin during pregnancy impairs glucose metabolism. In addition, there is a dysregulation in insulin secretion at various stages of the development of pregnancy and an apparent failure in the glucose-stimulated insulin secretion during the lactation period, evidencing the role of melatonin on the regulation of insulin secretion. This mechanism seems not to be dependent on the antioxidant effect of melatonin and probably dependent on MT2 receptors. We also observed changes in the mechanisms of death and cell proliferation at the end of pregnancy and beginning of lactation, crucial periods for pancreatic remodeling. The present observations strongly suggest that both functionality and remodeling of the endocrine pancreas are impaired in the absence of melatonin and its adequate replacement, mimicking the physiological increase seen during pregnancy, is able to reverse some of the damage observed. Thus, we conclude that pineal melatonin is important to metabolic adaptation to pregnancy and both the functionality of the beta cells and the remodeling of the pancreas during pregnancy and early lactation, ensuring the return to nonpregnancy conditions.


Subject(s)
Insulin-Secreting Cells/metabolism , Lactation/metabolism , Melatonin/metabolism , Animals , Female , Glucose/metabolism , Insulin Secretion/physiology , Islets of Langerhans/metabolism , Pregnancy , Rats , Rats, Wistar
7.
Cell Biochem Funct ; 39(2): 335-343, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32911572

ABSTRACT

Lixisenatide, a glucagon-like peptide-1 (GLP-1) receptor agonist, is used in the treatment of type 2 diabetes mellitus (T2DM). It increases insulin (INS) secretion and can decrease INS resistance, improving metabolic disorders in this disease. However, its effects on metabolic disturbances in cancer-bearing, which also exhibit decreased INS secretion and INS resistance, changes that may contribute to weight loss (cachexia), have not yet been evaluated. The purpose of this study was to investigate the lixisenatide treatment effects on mild cachexia and related metabolic abnormalities in Walker-256 tumour-bearing rats. Lixisenatide (50 µg kg-1 , SC) was administered once daily, for 6 days, after inoculation of Walker-256 tumour cells. Acute lixisenatide treatment did not improve hypoinsulinemia, INS secretion and INS resistance of tumour-bearing rats. It also did not prevent the reduced glucose and increased triacylglycerol and lactate in the blood and nor the loss of retroperitoneal and epididymal fat of these animals. However, acute lixisenatide treatment accentuated the body mass loss of tumour-bearing rats. Therefore, lixisenatide, unlike T2DM, does not improve hypoinsulinemia and INS resistance associated with cancer, evidencing that it does not have the same beneficial effects in these two diseases. In addition, lixisenatide aggravated weight loss of tumour-bearing rats, suggesting that its use for treatment of T2DM patients with cancer should be avoided. SIGNIFICANCE OF THE STUDY: Lixisenatide increases insulin secretion and appears to reduce insulin resistance in T2DM. However, lixisenatide treatment does not improve hypoinsulinemia and insulin resistance associated with cancer, as it does in T2DM, and aggravated weight loss, suggesting that its use for treatment of T2DM patients with cancer should be avoided.


Subject(s)
Hypoglycemic Agents/pharmacology , Insulin Secretion/drug effects , Peptides/pharmacology , Animals , Blood Glucose/analysis , Cachexia/prevention & control , Cell Line, Tumor , Glucose/pharmacology , Humans , Hypoglycemic Agents/therapeutic use , Insulin/blood , Insulin Resistance , Insulin-Secreting Cells/cytology , Insulin-Secreting Cells/metabolism , Male , Peptides/therapeutic use , Rats , Rats, Wistar , Transplantation, Heterologous , Triglycerides/blood , Weight Loss/drug effects
8.
Free Radic Biol Med ; 162: 1-13, 2021 01.
Article in English | MEDLINE | ID: mdl-33249137

ABSTRACT

Modern lifestyles, including lack of physical activity and poor nutritional habits, are driving the rapidly increasing prevalence of obesity and type 2 diabetes. Increased levels of free fatty acids (FFAs), particularly saturated FFAs, in obese individuals have been linked to pancreatic ß-cell failure. This process, termed lipotoxicity, involves activation of several stress responses, including ER stress and oxidative stress. However, the molecular underpinnings and causal relationships between the disparate stress responses remain unclear. Here we employed transgenic mice, expressing a genetically-encoded cytosolic H2O2 sensor, roGFP2-Orp1, to monitor dynamic changes in H2O2 levels in pancreatic islets in response to chronic palmitate exposure. We identified a transient increase in H2O2 levels from 4 to 8 h after palmitate addition, which was mirrored by a concomitant decrease in cellular NAD(P)H levels. Intriguingly, islets isolated from NOX2 knock-out mice displayed no H2O2 transient upon chronic palmitate treatment. Furthermore, NOX2 knockout rescued palmitate-dependent impairment of insulin secretion, calcium homeostasis and viability. Chemical inhibition of NOX activity protected islets from palmitate-induced impairment in insulin secretion, however had no detectable impact upon the induction of ER stress. In summary, our results reveal that transient NOX2-dependent H2O2 production is a likely cause of early palmitate-dependent lipotoxic effects.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Islets of Langerhans , Animals , Hydrogen Peroxide , Insulin , Mice , NADPH Oxidase 2/genetics , Palmitates/toxicity
9.
Redox Rep ; 25(1): 41-50, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32354273

ABSTRACT

Objective: Investigate the involvement of the fatty acids receptor GPR40 in the assembly and activation of NADPH oxidase and the implications on pancreatic ß-cell function.Methods: BRIN-BD11 ß-cells were exposed to GPR40 agonist (GW9508) or linoleic acid in different glucose concentrations. Superoxide and H2O2 were analyzed, respectively, by DHE fluorescence and by fluorescence of the H2O2 sensor, roGFP2-Orp1. Protein contents of p47phox in plasma membrane and cytosol were analyzed by western blot. NADPH oxidase role was evaluated by p22phox siRNA or by pharmacological inhibition with VAS2870. NOX2 KO islets were used to measure total cytosolic calcium and insulin secretion.Results: GW9508 and linoleic acid increased superoxide and H2O2 contents at 5.6 and 8.3 mM of glucose. In addition, in 5.6 mM, but not at 16.7 mM of glucose, activation of GPR40 led to the translocation of p47phox to the plasma membrane. Knockdown of p22phox abolished the increase in superoxide after GW9508 and linoleic acid. No differences in insulin secretion were found between wild type and NOX2 KO islets treated with GW9508 or linoleic acid.Discussion: We report for the first time that acute activation of GPR40 leads to NADPH oxidase activation in pancreatic ß-cells, without impact on insulin secretion.


Subject(s)
Insulin Secretion , Insulin-Secreting Cells/metabolism , NADPH Oxidases/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Enzyme Activation , Insulin-Secreting Cells/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidases/genetics , Rats , Receptors, G-Protein-Coupled/genetics
10.
Nutrients ; 12(4)2020 Apr 09.
Article in English | MEDLINE | ID: mdl-32283715

ABSTRACT

Fasting is known to cause physiological changes in the endocrine pancreas, including decreased insulin secretion and increased reactive oxygen species (ROS) production. However, there is no consensus about the long-term effects of intermittent fasting (IF), which can involve up to 24 hours of fasting interspersed with normal feeding days. In the present study, we analyzed the effects of alternate-day IF for 12 weeks in a developing and healthy organism. Female 30-day-old Wistar rats were randomly divided into two groups: control, with free access to standard rodent chow; and IF, subjected to 24-hour fasts intercalated with 24-hours of free access to the same chow. Alternate-day IF decreased weight gain and food intake. Surprisingly, IF also elevated plasma insulin concentrations, both at baseline and after glucose administration collected during oGTT. After 12 weeks of dietary intervention, pancreatic islets displayed increased ROS production and apoptosis. Despite their lower body weight, IF animals had increased fat reserves and decreased muscle mass. Taken together, these findings suggest that alternate-day IF promote ß -cell dysfunction, especially in developing animals. More long-term research is necessary to define the best IF protocol to reduce side effects.


Subject(s)
Adipose Tissue/metabolism , Eating , Fasting/adverse effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Weight Loss , Adipose Tissue/pathology , Animals , Apoptosis , Fasting/physiology , Female , Insulin/blood , Insulin Secretion , Muscles/metabolism , Muscles/pathology , Rats, Wistar , Reactive Oxygen Species/metabolism , Time Factors
11.
Pharmacol Rep ; 72(6): 1725-1737, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32274767

ABSTRACT

BACKGROUND: Free fatty acids (FFAs) are known for their dual effects on insulin secretion and pancreatic ß-cell survival. Short-term exposure to FFAs, such as palmitate, increases insulin secretion. On the contrary, long-term exposure to saturated FFAs results in decreased insulin secretion, as well as triggering oxidative stress and endoplasmic reticulum (ER) stress, culminating in cell death. The effects of FFAs can be mediated either via their intracellular oxidation and consequent effects on cellular metabolism or via activation of the membrane receptor GPR40. Both pathways are likely to be activated upon both short- and long-term exposure to FFAs. However, the precise role of GPR40 in ß-cell physiology, especially upon chronic exposure to FFAs, remains unclear. METHODS: We used the GPR40 agonist (GW9508) and antagonist (GW1100) to investigate the impact of chronically modulating GPR40 activity on BRIN-BD11 pancreatic ß-cells physiology and function. RESULTS: We observed that chronic activation of GPR40 did not lead to increased apoptosis, and both proliferation and glucose-induced calcium entry were unchanged compared to control conditions. We also observed no increase in H2O2 or superoxide levels and no increase in the ER stress markers p-eIF2α, CHOP and BIP. As expected, palmitate led to increased H2O2 levels, decreased cell viability and proliferation, as well as decreased metabolism and calcium entry. These changes were not counteracted by the co-treatment of palmitate-exposed cells with the GPR40 antagonist GW1100. CONCLUSIONS: Chronic activation of GPR40 using GW9508 does not negatively impact upon BRIN-BD11 pancreatic ß-cells physiology and function. The GPR40 antagonist GW1100 does not protect against the deleterious effects of chronic palmitate exposure. We conclude that GPR40 is probably not involved in mediating the toxicity associated with chronic palmitate exposure.


Subject(s)
Benzoates/pharmacology , Insulin-Secreting Cells/metabolism , Methylamines/pharmacology , Propionates/pharmacology , Pyrimidines/pharmacology , Receptors, G-Protein-Coupled/metabolism , Animals , Apoptosis/drug effects , Benzoates/administration & dosage , Calcium/metabolism , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Endoplasmic Reticulum Stress/drug effects , Hydrogen Peroxide/metabolism , Methylamines/administration & dosage , Palmitates/toxicity , Propionates/administration & dosage , Pyrimidines/administration & dosage , Rats , Receptors, G-Protein-Coupled/drug effects
12.
J Cell Biochem ; 121(11): 4558-4568, 2020 11.
Article in English | MEDLINE | ID: mdl-32056265

ABSTRACT

Cancer-bearing often exhibits hypoinsulinemia, insulin (INS) resistance and glutamine depletion associated with cachexia. However, INS and glutamine effects on cachexia metabolic abnormalities, particularly on tumor-affected proteins related to INS resistance, are poorly known. The main purpose of this study was to investigate the effects of INS and glutamine dipeptide (GDP) treatments on phospho-protein kinase B (p-Akt), and phospho-hormone sensitive lipase (p-HSL) in Walker-256 tumor-bearing rats. INS (NPH, 40 UI/kg, subcutaneous), GDP (1.5 g/kg, oral), INS+GDP or vehicle (control rats) were administered for 13 days, once a day, starting at the day of inoculation of tumor cells. The experiments were performed 4 hours after the last treatment to evaluate acute effects of INS and GDP, besides the chronic effects. INS and/or INS+GDP treatments, which markedly increased the insulinemia, increased the p-Akt: total Akt ratio and prevented the increased p-HSLSer552 : total HSL ratio in the retroperitoneal fat of tumor-bearing rats, without changing the INS resistance and increased expression of factor tumor necrosis-α (TNF-α) in this tissue. INS and INS+GDP also increased the p-Akt: total Akt ratio, whereas GDP and INS+GDP increased the GLUT4 glucose transporter gene expression, in the gastrocnemius muscle of the tumor-bearing rats. Accordingly, treatments with INS and INS+GDP markedly reduced glycemia, increased retroperitoneal fat and attenuated the body mass loss of tumor-bearing rats. In conclusion, hyperinsulinemia induced by high-dose INS treatments increased Akt phosphorylation and prevented increased p-HSLSer552 : total HSL ratio, overlapping INS resistance. These effects are consistent with increased fat mass gain and weight loss (cachexia) attenuation of tumor-bearing rats, evidencing that Akt activation is a potential strategy to prevent loss of fat mass in cancer cachexia.


Subject(s)
Cachexia/drug therapy , Carcinoma 256, Walker/complications , Glutamine/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Animals , Blood Glucose/analysis , Cachexia/etiology , Cachexia/metabolism , Cachexia/pathology , Carcinoma 256, Walker/pathology , Drug Therapy, Combination , Insulin Resistance , Male , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Wistar
13.
Endocrine ; 68(2): 287-295, 2020 05.
Article in English | MEDLINE | ID: mdl-31997150

ABSTRACT

PURPOSE: Diabetes mellitus (DM) has a multifactorial etiology that imparts a particular challenge to effective pharmacotherapy. Thyroid hormone actions have demonstrated beneficial effects in diabetic as well as obese rats. In both conditions, inflammation status plays a crucial role in the development of insulin resistance. Taking this into consideration, the present study aimed to demonstrate another possible pathway of thyroid hormone action on insulin sensitivity in a spontaneous type 2 diabetic rat model: the Goto-Kakizaki (GK) rats. GK animals present all typical hallmarks of type 2 DM (T2DM), except the usual peripheric inflammatory condition, observed in the other T2DM animal models. METHODS: GK rats were treated or not with 3,5,3'triiodothyronine (T3). Insulin sensitivity, glucose tolerance, and proteins related to glucose uptake and utilization were evaluated in the skeletal muscle, white adipose tissue, and liver. RESULTS: GK rats T3-treated presented enhanced insulin sensitivity, increased GLUT-4 content in the white adipose tissue and skeletal muscle, and increased hexokinase and citrate synthase content in skeletal muscle. Both non-treated and T3-treated GK rats did not present alterations in cytokine content in white adipose tissue, skeletal muscle, liver, and serum. CONCLUSIONS: These results indicate that T3 improves insulin sensitivity in diabetic rats by a novel inflammatory-independent mechanism.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Insulin , Muscle, Skeletal , Rats , Triiodothyronine
14.
Sci Rep ; 8(1): 13061, 2018 08 30.
Article in English | MEDLINE | ID: mdl-30166558

ABSTRACT

The exposure of pancreatic islets to high glucose is believed to be one of the causal factors of the progressive lowering of insulin secretion in the development of type 2 diabetes. The progression of beta cell failure to type 2 diabetes is preceded by an early positive increase in the insulin secretory response to glucose, which is only later followed by a loss in the secretion capacity of pancreatic islets. Here we have investigated the electrophysiological mechanisms underlying the early glucose-mediated gain of function. Rodent pancreatic islets or dispersed islet cells were cultured in medium containing either 5.6 (control) or 16.7 (high-glucose) mM glucose for 24 h after isolation. Glucose-stimulated insulin secretion was enhanced in a concentration-dependent manner in high glucose-cultured islets. This was associated with a positive effect on beta cell exocytotic capacity, a lower basal KATP conductance and a higher glucose sensitivity to fire action potentials. Despite no changes in voltage-gated Ca2+ currents were observed in voltage-clamp experiments, the [Ca2+]I responses to glucose were drastically increased in high glucose-cultured cells. Of note, voltage-dependent K+ currents were decreased and their activation was shifted to more depolarized potentials by high-glucose culture. This decrease in voltage-dependent K+ channel (Kv) current may be responsible for the elevated [Ca2+]I response to metabolism-dependent and independent stimuli, associated with more depolarized membrane potentials with lower amplitude oscillations in high glucose-cultured beta cells. Overall these results show that beta cells improve their response to acute challenges after short-term culture with high glucose by a mechanism that involves modulation not only of metabolism but also of ion fluxes and exocytosis, in which Kv activity appears as an important regulator.


Subject(s)
Cell Culture Techniques , Glucose/toxicity , Insulin-Secreting Cells/metabolism , Animals , Calcium/metabolism , Calcium Channels/metabolism , Electric Capacitance , Exocytosis/drug effects , Insulin Secretion/drug effects , Insulin-Secreting Cells/drug effects , Intracellular Space/metabolism , KATP Channels/metabolism , Potassium Channels/metabolism , Rats, Wistar , Time Factors
15.
Nat Sci Sleep ; 10: 203-215, 2018.
Article in English | MEDLINE | ID: mdl-30046256

ABSTRACT

BACKGROUND: Melatonin is a neuroendocrine hormone that regulates many functions involving energy metabolism and behavior in mammals throughout the light/dark cycle. It is considered an output signal of the central circadian clock, located in the suprachiasmatic nucleus of the hypothalamus. Melatonin synthesis can be influenced by other hormones, such as insulin and glucocorticoids in pathological conditions or during stress. Furthermore, glucocorticoids appear to modulate circadian clock genes in peripheral tissues and are associated with the onset of metabolic diseases. In the pineal gland, the modulation of melatonin synthesis by clock genes has already been demonstrated. However, few studies have shown the effects of glucocorticoids on clock genes expression in the pineal gland. RESULTS: We verified that rats treated with dexamethasone (2 mg/kg body weight, intraperitoneal) for 10 consecutive days, showed hyperglycemia and pronounced hyperinsulinemia during the dark phase. Insulin sensitivity, glucose tolerance, melatonin synthesis, and enzymatic activity of arylalkylamine N-acetyltransferase, the key enzyme of melatonin synthesis, were reduced. Furthermore, we observed an increase in the expression of Bmal1, Per1, Per2, Cry1, and Cry2 in pineal glands of rats treated with dexamethasone. CONCLUSION: These results show that chronic treatment with dexamethasone can modulate both melatonin synthesis and circadian clock expression during the dark phase.

16.
Can J Physiol Pharmacol ; 96(5): 498-505, 2018 May.
Article in English | MEDLINE | ID: mdl-29304290

ABSTRACT

Metformin (MET) is widely used in the correction of insulin (INS) resistance and metabolic abnormalities in type 2 diabetes. However, its effect on INS resistance and metabolic disorders associated with cancer cachexia is not established. We investigated the MET effects, isolated or associated with INS, on INS resistance and metabolic changes induced by Walker-256 tumor in rats with advanced cachexia. MET (500 mg·kg-1, oral) and MET + INS (1.0 IU·kg-1, s.c.) were administered for 12 days, starting on the day of tumor cell inoculation. Tumor-bearing rats showed adipose and muscle mass wasting, body mass loss, anorexia, decreased Akt phosphorylation in retroperitoneal and mesenteric adipose tissue, peripheral INS resistance, hypoinsulinemia, reduced INS content and secretion from pancreatic islets, and also inhibition of glycolysis, gluconeogenesis, and glycogenolysis in liver. MET and MET + INS treatments did not prevent these changes. It can be concluded that treatments with MET and MET + INS did not prevent the adipose and muscle mass wasting and body mass loss of tumor-bearing rats possibly by not improving INS resistance. Therefore, MET, used for the treatment of INS resistance in type 2 diabetes, is not effective in improving INS resistance in the advanced stage of cancer cachexia, evidencing that the drug does not have the same beneficial effect in these 2 diseases.


Subject(s)
Cachexia/complications , Cachexia/metabolism , Insulin Resistance , Metformin/pharmacology , Neoplasms/complications , Animals , Cachexia/drug therapy , Cachexia/pathology , Insulin/metabolism , Male , Metformin/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
17.
Nutrients ; 9(10)2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29053582

ABSTRACT

Zinc is an essential component of the insulin granule and it possibly modulates insulin secretion and signaling. Since insulin resistance is a hallmark in the development of type 2 diabetes mellitus, this study aimed at investigating if zinc supplementation is able to improve glucose tolerance and ß-cell function in a model of insulin resistance. Male C57BL/6 mice were distributed in four groups according to the diet: normal fat (NF); normal fat supplemented with ZnCl2 (NFZ); high-fat (HF); and, high-fat chow supplemented with ZnCl2 (HFZ). Intraperitoneal glucose (ipGTT) and insulin (ipITT) tolerance, glycemia, insulinemia, HOMA-IR, and HOMA-ß were determined after 15 weeks in each diet. Glucose-stimulated insulin secretion (GSIS) was investigated in isolated islets. The insulin effect on glucose uptake, metabolism, and signaling was investigated in soleus muscle. ZnCl2 did not affect body mass or insulin sensitivity as assessed by ipITT, HOMA-IR, muscle glucose metabolism, and Akt and GSK3-ß phosphorylation. However, glucose tolerance, HOMA-ß, and GSIS were significantly improved by ZnCl2 supplementation. Therefore, ZnCl2 supplementation improves glucose homeostasis in high fat-fed mice by a mechanism that enhances ß-cell function, rather than whole-body or muscle insulin sensitivity.


Subject(s)
Blood Glucose/metabolism , Diet, High-Fat , Homeostasis/drug effects , Insulin-Secreting Cells/drug effects , Zinc/administration & dosage , Animals , Chlorides/administration & dosage , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Disease Models, Animal , Glycated Hemoglobin/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Insulin/blood , Insulin/metabolism , Insulin Resistance , Insulin Secretion , Insulin-Secreting Cells/cytology , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Zinc/blood , Zinc Compounds/administration & dosage
18.
Eur J Pharmacol ; 806: 67-74, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28390870

ABSTRACT

Cachexia is the main cause of mortality in advanced cancer patients. We investigated the effects of insulin (INS) and glutamine dipeptide (GDP), isolated or associated, on cachexia and metabolic changes induced by Walker 256 tumor in rats. INS (NPH, 40 UI/kg, sc) or GDP (1.5g/kg, oral gavage) was once-daily administered during 11 days after tumor cell inoculation. GDP, INS or INS+GDP treatments did not influence the tumor growth. However, INS and INS+GDP prevented retroperitoneal fat wasting and body weight loss of tumor-bearing rats. In consistency, INS and INS+GDP prevented the increased expression of triacylglycerol lipase (ATGL) and hormone sensitive lipase (HSL), without changing the expression of tumor necrosis factor α (TNF-α) and interleukin-6 (IL-6) in the retroperitoneal adipose tissue of tumor-bearing rats. INS and INS+GDP also prevented anorexia and hyperlactatemia of tumor-bearing rats. However, INS and INS+GDP accentuated the loss of muscle mass (gastrocnemius, soleus and long digital extensor) without affecting the myostatin expression in the gastrocnemius muscle and blood corticosterone. GDP treatment did not promote beneficial effects. It can be concluded that treatment with INS (INS or INS+GDP), not with GDP, prevented fat wasting and weight loss in tumor-bearing rats without reducing tumor growth. These effects might be attributed to the reduction of lipases expression (ATGL and LHS) and increased food intake. The results show the physiological function of INS in the suppression of lipolysis induced by cachexia mediators in tumor-bearing rats.


Subject(s)
Adipose Tissue/drug effects , Cachexia/prevention & control , Gene Expression Regulation, Enzymologic/drug effects , Insulin/pharmacology , Lipase/metabolism , Mammary Neoplasms, Animal/complications , Weight Loss/drug effects , Adipose Tissue/metabolism , Animals , Cachexia/complications , Cell Line, Tumor , Interleukin-6/metabolism , Male , Mammary Neoplasms, Animal/enzymology , Mammary Neoplasms, Animal/pathology , Mammary Neoplasms, Animal/physiopathology , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/metabolism
19.
Mol Cell Endocrinol ; 439: 354-362, 2017 01 05.
Article in English | MEDLINE | ID: mdl-27664519

ABSTRACT

High glucose-induced oxidative stress and increased NADPH oxidase-2 (NOX2) activity may contribute to the progressive decline of the functional ß-cell mass in type 2 diabetes. To test that hypothesis, we characterized, in islets from male NOX2 knockout (NOX2-KO) and wild-type (WT) C57BL/6J mice cultured for up to 3 weeks at 10 or 30 mmol/l glucose (G10 or G30), the in vitro effects of glucose on cytosolic oxidative stress using probes sensing glutathione oxidation (GRX1-roGFP2), thiol oxidation (roGFP1) or H2O2 (roGFP2-Orp1), on ß-cell stimulus-secretion coupling events and on ß-cell apoptosis. After 1-2 days of culture in G10, the glucose stimulation of insulin secretion (GSIS) was ∼1.7-fold higher in NOX2-KO vs. WT islets at 20-30 mmol/l glucose despite similar rises in NAD(P)H and intracellular calcium concentration ([Ca2+]i) and no differences in cytosolic GRX1-roGFP2 oxidation. After long-term culture at G10, roGFP1 and roGFP2-Orp1 oxidation and ß-cell apoptosis remained low, and the glucose-induced rises in NAD(P)H, [Ca2+]i and GSIS were similarly preserved in both islet types. After prolonged culture at G30, roGFP1 and roGFP2-Orp1 oxidation increased in parallel with ß-cell apoptosis, the glucose sensitivity of the NADPH, [Ca2+]i and insulin secretion responses increased, the maximal [Ca2+]i response decreased, but maximal GSIS was preserved. These responses were almost identical in both islet types. In conclusion, NOX2 is a negative regulator of maximal GSIS in C57BL/6J mouse islets, but it does not detectably contribute to the in vitro glucotoxic induction of cytosolic oxidative stress and alterations of ß-cell survival and function.


Subject(s)
Glucose/toxicity , Insulin-Secreting Cells/enzymology , Insulin-Secreting Cells/pathology , NADPH Oxidase 2/metabolism , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Cytosol/metabolism , Glucose Transporter Type 2/genetics , Glucose Transporter Type 2/metabolism , Glutaredoxins/metabolism , Glutathione/metabolism , Green Fluorescent Proteins/metabolism , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Male , Mice, Inbred C57BL , Mice, Knockout , NADPH Oxidase 2/deficiency , Oxidation-Reduction , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sulfhydryl Compounds/metabolism , Tissue Culture Techniques
20.
Life Sci ; 171: 68-74, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-28034669

ABSTRACT

AIM: The lipogenic effect of pioglitazone (PGZ), an insulin (INS) sensitizer, is well established. However, few studies have evaluated PGZ effects in preventing weight loss in cancer. We investigated PGZ effects, alone or associated with INS, on INS resistance, cachexia and metabolic abnormalities induced by Walker-256 tumor in rats. MAIN METHODS: PGZ (5.0mg·kg-1, oral) or PGZ+INS (NPH, 1.0UI·kg-1, sc), were once-daily administered during 12days, starting on the day inoculation of Walker-256 tumor cells. Rats were separated in small (about 17g) and big (about 30g) tumor-bearing. KEY FINDINGS: Big tumor-bearing rats showed greater cachexia, blood triacylglycerol and free fatty acids and INS resistance. PGZ and PGZ+INS treatments did not change tumor growth and food intake, but reduced several abnormalities such as INS resistance, increased blood free fatty acids, retroperitoneal fat wasting and body weight loss in small tumor-bearing rats. The prevention of retroperitoneal fat wasting did not involve reduction of tumor necrosis factor-α expression increased. In big tumor-bearing rats, PGZ and PGZ+INS treatments reversed the high blood triacylglycerol and free fatty acids levels, but had no effect on other parameters. SIGNIFICANCE: PGZ and PGZ+INS improved INS peripheral sensitivity, possibly by decreasing blood free fatty acids, and reduced fat tissue wasting and body weight loss in small tumor-bearing rats. The results suggest clinical benefits of PGZ in preventing INS resistance, adipose tissue wasting and weight loss when the tumor is small, i.e., in less severe cachexia.


Subject(s)
Cachexia/drug therapy , Insulin Resistance , Thiazolidinediones/pharmacology , Weight Loss/drug effects , Animals , Male , Pioglitazone , Rats , Rats, Wistar , Thiazolidinediones/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...