Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
aBIOTECH ; 2(1): 14-31, 2021 Mar.
Article in English | MEDLINE | ID: mdl-36304479

ABSTRACT

Drought stress is major abiotic stress that affects soybean production. Therefore, it is widely desirable that soybean becomes more tolerant to stress. To provide insights into regulatory mechanisms of the stress response, we compared the global gene expression profiles from leaves of two soybean genotypes that display different responses to water-deficit (BR 16 and Embrapa 48, drought-sensitive and drought-tolerant, respectively). After the RNA-seq analysis, a total of 5335 down-regulated and 3170 up-regulated genes were identified in the BR16. On the other hand, the number of genes differentially expressed was markedly lower in the Embrapa 48, 355 up-regulated and 471 down-regulated genes. However, induction and expression of protein kinases and transcription factors indicated signaling cascades involved in the drought tolerance. Overall, the results suggest that the metabolism of pectin is differently modulated in response to drought stress and may play a role in the soybean defense mechanism against drought. This occurs via an increase of the cell wall plasticity and crosslink, which contributed to a higher hydraulic conductance (K f) and relative water content (RWC%). The drought-tolerance mechanism of the Embrapa 48 genotype involves remodeling of the cell wall and increase of the hydraulic conductance to the maintenance of cell turgor and metabolic processes, resulting in the highest leaf RWC, photosynthetic rate (A), transpiration (E) and carboxylation (A/C i). Thus, we concluded that the cell wall adjustment under drought is important for a more efficient water use which promoted a more active photosynthetic metabolism, maintaining higher plant growth under drought stress. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-021-00043-4.

2.
Article in English | MEDLINE | ID: mdl-28018861

ABSTRACT

Sporadic and inflammatory forms of colorectal cancer (CRC) account for more than 80% of cases. Recent publications have shown mechanistic evidence for the involvement of gut bacteria in the development of both CRC-forms. Whereas, colon and rectal cancer have been routinely studied together as CRC, increasing evidence show these to be distinct diseases. Also, the common use of fecal samples to study microbial communities may reflect disease state but possibly not the tumor microenvironment. We performed this study to evaluate differences in bacterial communities found in tissue samples of 18 rectal-cancer subjects when compared to 18 non-cancer controls. Samples were collected during exploratory colonoscopy (non-cancer group) or during surgery for tumor excision (rectal-cancer group). High throughput 16S rRNA amplicon sequencing of the V4-V5 region was conducted on the Ion PGM platform, reads were filtered using Qiime and clustered using UPARSE. We observed significant increases in species richness and diversity in rectal cancer samples, evidenced by the total number of OTUs and the Shannon and Simpson indexes. Enterotyping analysis divided our cohort into two groups, with the majority of rectal cancer samples clustering into one enterotype, characterized by a greater abundance of Bacteroides and Dorea. At the phylum level, rectal-cancer samples had increased abundance of candidate phylum OD1 (also known as Parcubacteria) whilst non-cancer samples had increased abundance of Planctomycetes. At the genera level, rectal-cancer samples had higher abundances of Bacteroides, Phascolarctobacterium, Parabacteroides, Desulfovibrio, and Odoribacter whereas non-cancer samples had higher abundances of Pseudomonas, Escherichia, Acinetobacter, Lactobacillus, and Bacillus. Two Bacteroides fragilis OTUs were more abundant among rectal-cancer patients seen through 16S rRNA amplicon sequencing, whose presence was confirmed by immunohistochemistry and enrichment verified by digital droplet PCR. Our findings point to increased bacterial richness and diversity in rectal cancer, along with several differences in microbial community composition. Our work is the first to present evidence for a possible role of bacteria such as B. fragilis and the phylum Parcubacteria in rectal cancer, emphasizing the need to study tissue-associated bacteria and specific regions of the gastrointestinal tract in order to better understand the possible links between the microbiota and rectal cancer.


Subject(s)
Bacteria/classification , Bacteria/genetics , Microbial Consortia/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rectal Neoplasms/microbiology , Adult , Aged , Biodiversity , Biopsy , Brazil , Cluster Analysis , Colon/microbiology , Colon/pathology , Colonoscopy/methods , DNA, Bacterial/genetics , DNA, Ribosomal , Feces/microbiology , Female , Gastrointestinal Tract/microbiology , Genes, Bacterial , Humans , Immunohistochemistry , Male , Middle Aged , Molecular Typing , Sequence Analysis, DNA
3.
Plant Cell Physiol ; 57(5): 1098-114, 2016 May.
Article in English | MEDLINE | ID: mdl-27016095

ABSTRACT

The onset of leaf senescence is a highly regulated developmental change that is controlled by both genetics and the environment. Senescence is triggered by massive transcriptional reprogramming, but functional information about its underlying regulatory mechanisms is limited. In the current investigation, we performed a functional analysis of the soybean (Glycine max) osmotic stress- and endoplasmic reticulum (ER) stress-induced NAC transcription factor GmNAC81 during natural leaf senescence using overexpression studies and reverse genetics. GmNAC81-overexpressing lines displayed accelerated flowering and leaf senescence but otherwise developed normally. The precocious leaf senescence of GmNAC81-overexpressing lines was associated with greater Chl loss, faster photosynthetic decay and higher expression of hydrolytic enzyme-encoding GmNAC81 target genes, including the vacuolar processing enzyme (VPE), an executioner of vacuole-triggered programmed cell death (PCD). Conversely, virus-induced gene silencing-mediated silencing of GmNAC81 delayed leaf senescence and was associated with reductions in Chl loss, lipid peroxidation and the expression of GmNAC81 direct targets. Promoter-reporter studies revealed that the expression pattern of GmNAC81 was associated with senescence in soybean leaves. Our data indicate that GmNAC81 is a positive regulator of age-dependent senescence and may integrate osmotic stress- and ER stress-induced PCD responses with natural leaf senescence through the GmNAC81/VPE regulatory circuit.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Gene Expression Regulation, Plant , Glycine max/physiology , Transcription Factors/metabolism , Animals , Cellular Senescence , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Gene Expression Regulation, Developmental , Osmotic Pressure , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Glycine max/genetics , Time Factors , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...