Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 215: 112122, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33725489

ABSTRACT

The human ingestion of mercury (Hg) from sea food is of big concern worldwide due to adverse health effects, and more specifically if shark consumption constitutes a regular part of the human diet. In this study, the total mercury (THg) concentration in muscle tissue were determined in six sympatric shark species found in a fishing vessel seized in the Galapagos Marine Reserve in 2017. The THg concentrations in shark muscle samples (n = 73) varied from 0.73 mg kg-1 in bigeye thresher sharks (Alopias superciliosus) to 8.29 mg kg-1 in silky sharks (Carcharhinus falciformis). A typical pattern of Hg bioaccumulation was observed for all shark species, with significant correlation between THg concentration and shark size for bigeye thresher sharks, pelagic thresher sharks (Alopias pelagicus) and silky sharks. Regarding human health concerns, the THg mean concentration exceeded the maximum weekly intake fish serving in all the studied species. Mass-Dependent Fractionation (MDF, δ202Hg values) and Mass-Independent Fractionation (MIF, Δ199Hg values) of Hg in whitetip sharks (Carcharhinus longimanus) and silky sharks, ranged from 0.70‰ to 1.08‰, and from 1.97‰ to 2.89‰, respectively. These high values suggest that both species are feeding in the epipelagic zone (i.e. upper 200 m of the water column). While, blue sharks (Prionace glauca), scalloped hammerhead sharks (Shyrna lewini) and thresher sharks were characterized by lower Δ199Hg and δ202Hg values, indicating that these species may focus their foraging behavior on prey of mesopelagic zone (i.e. between 200 and 1000 m depth). In conclusion, the determination of THg concentration provides straight-forward evidence of the human health risks associated with shark consumption, while mercury isotopic compositions constitute a powerful tool to trace the foraging strategies of these marine predators. CAPSULE: A double approach combining Hg concentrations with stable isotopes ratios allowed to assess ontogeny in common shark species in the area of the Galapagos Marine Reserve and the human health risks concern associated to their consumption.


Subject(s)
Mercury/metabolism , Sharks/metabolism , Water Pollutants, Chemical/metabolism , Animals , Bioaccumulation , Environmental Monitoring/methods , Feeding Behavior , Humans , Isotopes , Mercury/analysis , Mercury Isotopes , Muscles/chemistry , Seafood , Sharks/physiology , Water Pollutants, Chemical/analysis
2.
J Water Health ; 18(6): 1050-1064, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33328374

ABSTRACT

Chemical elements, which are present in drinking water, could vary due to water sources, treatment processes or even the plumbing materials. Most of these elements do not represent a threat, while others, such as heavy metals, have been proven to cause harmful effects over human and aquatic wildlife. In this study, the quality of drinking water in three cities in Ecuador, Quito, Ibarra and Guayaquil was assessed through a multielement analysis and the heavy metal pollution index (HPI). A total of 102 drinking water samples and six natural water samples were collected and analyzed. Within the scope of analysis, results show that water quality complies with local and international guidelines. HPI did not show significant differences in the water that is supplied to the different neighborhoods of the three cities studied. However, actions should be taken to protect the sources of water, especially in Guayaquil, due to the presence of lead and chromium. For instance, lead was found in 2.8% of the samples in concentrations above World Health Organization (WHO) recommended values. Thus, we suggest to assessing the quality and age of the plumbing system within the whole country, in order to avoid drinking water contamination with heavy metals.


Subject(s)
Drinking Water , Metals, Heavy , Water Pollutants, Chemical , Cities , Ecuador , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 709: 136088, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-31887530

ABSTRACT

Currently, several concerns have been raised over metal contamination in the upper Amazon basin. Rivers that flow from the high Andes to the lowland Amazon are threatened by anthropogenic activities, which may, in turn, lead to increased metal concentrations in both water and sediments. In the present study, the impacts of multiple metal contamination sources in these ecosystems were identified. The degree of metal contamination was assessed in water and sediment and seed phytotoxicity analyses were carried out in samples taken from 14 sites located in upper Napo River tributaries, combining geochemical and ecotoxicological techniques. These tributaries were chosen based on their degree of anthropogenic contamination and proximity to known sources of relevant pollution, such as small-scale gold mining (MI), urban pollution (UP), fish farming (FF) and non-functional municipal landfill areas (LF). Our results suggest that anthropogenic activities are introducing metals to the aquatic ecosystem, as some metals were up to 500 times above the maximum permissible limits for the preservation of aquatic life established by Ecuadorian and North American guidelines. Sites located close to small-scale gold mining and sanitary landfills presented 100 to 1000 times higher concentrations than sites classified as "few threats". In water, Cd, Pb, Cu, Zn and Hg were mostly above the maximum permissible limits in the samples, while Cd in sediment reached concentrations 5-fold above the probable effect level (PEL). Phytotoxicity was associated through the diffuse contamination present in urban and landfill areas. Overall, metal concentrations and phytotoxicity assessments suggest anthropogenic effects to environmental contamination, even though natural sources cannot be disregarded. Anthropogenic effects in the eastern Andean Rivers need to be constantly monitored in order to build a complete picture on how pollution sources may affect this strategic Amazon basin area.

SELECTION OF CITATIONS
SEARCH DETAIL
...