Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Bull ; 240(2): 82-94, 2021 04.
Article in English | MEDLINE | ID: mdl-33939944

ABSTRACT

AbstractThe serpulid polychaete Hydroides elegans has emerged as a major model organism for studies of marine invertebrate settlement and metamorphosis and for processes involved in marine biofouling. Rapid secretion of an enveloping, membranous, organic primary tube provides settling larvae of H. elegans firm adhesion to a surface and a refuge within which to complete metamorphosis. While this tube is never calcified, it forms the template from which the calcified tube is produced at its anterior end. Examination of scanning and transmission electron micrographs of competent and settling larvae revealed that the tube is secreted from epidermal cells of the three primary segments, with material possibly transported through the larval cuticle via abundant microvilli. The tube is composed of complexly layered fibrous material that has an abundance of the amino acids that characterize the collagenous cuticle of other polychaetes, plus associated carbohydrates. The significance of the dependence on surface bacterial biofilms for stimulating settlement in this species is revealed as a complex interaction between primary tube material, as it is secreted, and the extracellular polymeric substances abundantly produced by biofilm-residing bacteria. This association appears to provide the settling larvae with an adhesion strength similar to that of bacteria in a biofilm and significantly less when larvae settle on a clean surface.


Subject(s)
Polychaeta , Animals , Biofilms , Invertebrates , Larva , Metamorphosis, Biological
2.
Mar Pollut Bull ; 163: 111945, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33444999

ABSTRACT

Ocean acidification generates a decrease in calcium carbonate availability essential for biomineralization in organisms such as mollusks. This effect was evaluated on Panopea globosa exposing for 7 days umbonate veliger larvae to two pH treatments: experimental (pH 7.5) and control (pH 8.0). Exposure to pH 7.5 affected growth, reducing larval shell length from 5.15-13.34% compared to the control group. This size reduction was confirmed with electron microscopy, also showing shell damage. The physiological response showed an increase in oxygen consumption in larvae exposed to low pH with a maximum difference of 1.57 nmol O2 h-1 larvae-1 at day 7. The gene expression analyses reported high expression values for nicotinamide adenine dinucleotide (NADH) dehydrogenase and Perlucin in larvae at pH 7.5, suggesting a higher energetic cost in this larval group to maintain homeostasis. In conclusion, this study showed that acidification affected development of P. globosa umbonate veliger larvae.


Subject(s)
Bivalvia , Seawater , Animals , Carbon Dioxide , Homeostasis , Hydrogen-Ion Concentration , Larva
3.
Zool Stud ; 60: e44, 2021.
Article in English | MEDLINE | ID: mdl-35003338

ABSTRACT

nvestigations of thermal limits are crucial to understanding climate change ecology because it illuminates how climate will shape future species distributions. This work determined the preferred temperature, critical threshold limits represented by the Critical Thermal Maximum (CTMax) and (CTMin), thermal window, oxygen consumption rate and thermal metabolic scope of Kelletia kelletii acclimated to 13, 16.0, 19.0 and 22.0 ± 1°C to determine if this species is sensitive to global warming. The preferred temperature (PT) of Kellet's whelk was determined using the acute method. The acclimation temperature significantly affected the thermal preference of the marine snail (P < 0.05) and increased from 13.2 to 24.2°C as the acclimation temperature increased from 13.0 to 22.0°C. The PT was 13.4°C. The acclimation temperature did not significantly affect the CTMax (P > 0.05), obtaining a range of 29.2 to 30.2°C. The CTMin had an interval of 9.2°C, at acclimation temperatures of 13 to 16°C, and increased significantly (P < 0.05) at 12.3°C in the acclimation interval of 19-22°C. The thermal window for the different acclimation temperatures was 163.5°C2. The oxygen consumption rate of the snails increased significantly (P < 0.05) when the acclimation temperature increased from 13.0 to 22.0°C, peaking at 63.6 mg of O2 kg-1 h-1 w.w. in snails maintained at the highest acclimation temperature. The thermal metabolic scope increased significantly (P < 0.05) when the acclimation temperature was 13.0°C, with values of 68.7 mg O2 h-1 kg-1 w.w., then decreased significantly (P < 0.05) to 27.9 mg O2 h-1 kg-1 w.w at 32°C. Therefore, the thermal aerobic scope was highest at the temperatures that K. kelletii preferred. These results may partially explain their pattern of distribution on the Baja California coast.

4.
Sci Data ; 3: 160087, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27727238

ABSTRACT

At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on 'habitat-level' measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.


Subject(s)
Bivalvia/physiology , Body Temperature , Animals , Climate Change , Ecosystem
5.
PLoS One ; 10(2): e0117936, 2015.
Article in English | MEDLINE | ID: mdl-25658586

ABSTRACT

Macroalgae and filamentous turf algae (FTA) are abundant on degraded coral reefs, and the reproductive responses of corals may indicate sub-lethal stress under these conditions. The percentage of gametogenic stages (PGS) and the maximum diameter of eggs (MDE; or egg size) of Orbicella annularis were used to evaluate the effect of long- (7-10 months) and short-term (2.5 months) FTA removal (treatments T1 and T2, respectively) at both the beginning (May) and the end (August) of gametogenesis. Ramets (individual lobes of a colony) surrounded by FTA (T3) or crustose coralline algae (CCA; T4) were used as controls. The removal of FTA enhanced the development of gametes (i.e., a larger and higher percentage of mature gametes (PMG)) of O. annularis for T1 vs. T3 ramets in May and T1 and T2 vs. T3 ramets in August. Similar values of PGS and MDE between gametes from T3 and T4 in both May and August were unexpected because a previous study had shown that the same ramets of T4 (with higher tissue thickness, chlorophyll a cm-2 and zooxanthellae density and lower mitotic index values) were less stressed than ramets of T3. Evaluating coral stress through reproduction can reveal more sensitive responses than other biological parameters; within reproductive metrics, PGS can be a better stress indicator than egg size. The presence of turf algae strongly impacted the development of gametes and egg size (e.g., PMG in ramets with FTA removal increased almost twofold in comparison with ramets surrounded by FTA in August), most likely exerting negative chronic effects in the long run due to the ubiquity and permanence of turf algae in the Caribbean. These algae can be considered a stressor that affects coral sexual reproduction. Although the effects of turf algae on O. annularis are apparently less severe than those of other stressors, the future of this species is uncertain because of the combined impacts of these effects, the decline of O. annularis populations and the almost complete lack of recruitment.


Subject(s)
Anthozoa/physiology , Coral Reefs , Gametogenesis/physiology , Germ Cells/physiology , Seaweed , Animals , Caribbean Region , Ecosystem
6.
Biol Bull ; 204(2): 114-25, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12700142

ABSTRACT

Settlement and metamorphosis in most well-studied marine invertebrates are rapid processes, triggered by external cues. How this initial environmentally mediated response is transduced into morphogenetic events that culminate in the formation of a functional juvenile is still not well understood for any marine invertebrate. The response of larvae of the serpulid polychaete Hydroides elegans to inhibitors of mRNA and protein synthesis was examined to determine if metamorphosis requires these molecular processes. Competent larvae of H. elegans were induced to metamorphose by exposing them to a bacterial film or a 3-h pulse of 10 mM CsCl in the presence of the gene-transcription inhibitor DRB (5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole) or the translation inhibitor emetine. When induced to metamorphose in the presence of either inhibitor, larvae of H. elegans progressed through metamorphosis to the point at which branchial radioles start to develop. DRB and emetine inhibited the incorporation of radiolabeled uridine into RNA and radiolabeled methionine into peptides, respectively, indicating that they were effective in blocking the appropriate syntheses. Taken together, these results indicate that the induction of metamorphosis in H. elegans does not require de novo transcription or translation, and that the form of the juvenile worm is achieved in two phases. During the first phase, larvae respond to the inducer by attaching to the substratum, secreting a primary tube, resorbing the prototroch cilia, undergoing caudal elongation, and differentiating the collar; once the collar is formed, they begin secreting the secondary, calcified tube. During the second phase, the small worm develops branchial radioles and begins to grow, requiring new mRNA and protein syntheses.


Subject(s)
Dichlororibofuranosylbenzimidazole/pharmacology , Emetine/pharmacology , Metamorphosis, Biological/drug effects , Polychaeta/embryology , Animals , Hawaii , Metamorphosis, Biological/physiology , Methionine/chemistry , Oceans and Seas , Polychaeta/genetics , Staining and Labeling , Uridine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...