Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 42(6): 1278-1287, 1988 Nov.
Article in English | MEDLINE | ID: mdl-28581078

ABSTRACT

The Hawaiian silversword alliance consists of the three genera Dubautia, Argyroxiphium, and Wilkesia, and is a classic example of adaptive radiation in an insular setting. Genetic variation and interspecific genetic differentiation based on ten enzyme loci are described for Dubautia and Wilkesia. Genetic identities among species span the range of values expected from interpopulation comparisons within a single species (I = 0.90-1.00) to those typical of interspecific comparisons (I→=0.67). Genetic-identity values correspond to biogeographic distribution and morphological distinctiveness, supporting a correlation of increasing genetic distance associated with the time of separation among lineages. It may be inferred that the high genetic identities observed within the Hawaiian Madiinae and other island plant groups are due to limited time spans available for taxa to accumulate new genetic variation through mutation. It appears that species may remain genetically similar (I > 0.90) even after time spans on the order of magnitude of 1,000,000 years.

3.
Evolution ; 40(5): 959-976, 1986 Sep.
Article in English | MEDLINE | ID: mdl-28556216

ABSTRACT

The Hawaiian silversword alliance of Argyroxiphium, Dubautia, and Wilkesia, in spite of exhibiting spectacular morphological, ecological, physiological, and chromosomal diversity, is remarkably cohesive, genetically. This is attested to by the ease of production of artificial hybrids and by the high frequency of spontaneous hybridization among such life forms as mat-forming subshrub, monocarpic rosette shrub, polycarpic shrub, cushion plant, tree, and vine. Even the least fertile of these hybrids is capable of producing backcross progeny. Moreover, first generation interspecific and intergeneric hybrids have been successfully used to produce trispecific hybrids in a number of instances. In general, the widest hybrid combinations have been as readily produced as crosses within a species. At present eight genomes or chromosome races distinguished by reciprocal translocations are recognized on the basis of meiotic analysis of artificial and spontaneous hybrids. Seven of these races are found among those species with 14 pairs of chromosomes. The eighth genome very likely characterizes all nine species of this alliance that have 13 pairs of chromosomes. The cytogenetic data indicate that redundancy of translocations involving the same chromosomes has been a recurrent theme in the chromosomal differentiation of these taxa. There appears to be little, if any, correlation between chromosomal evolution and adaptive radiation as assessed by gross habital differentiation in this group. However, within Dubautia, a novel ecophysiological trait associated with colonization of xeric habitats is restricted to species with n = 13. In contrast to the bulk of the Hawaiian flora, which is characterized by self-compatibility and chromosomal stability, it is suggested that the occurrence of self-incompatibility in the Hawaiian Madiinae may have favored selection of supergenes via chromosomal repatterning, and this may account for the diversity of chromosome structure seen in this group.

5.
Evolution ; 29(4): 681-699, 1975 Dec.
Article in English | MEDLINE | ID: mdl-28563102
SELECTION OF CITATIONS
SEARCH DETAIL
...