Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(5): e10079, 2023 May.
Article in English | MEDLINE | ID: mdl-37187967

ABSTRACT

The disruption of animals' symbiotic bacterial communities (their microbiota) has been associated with myriad factors including changes to the diet, hormone levels, and various stressors. The maintenance of healthy bacterial communities may be especially challenging for social species as their microbiotas are also affected by group membership, social relationships, microbial transfer between individuals, and social stressors such as increased competition and rank maintenance. We investigated the effects of increased social instability, as determined by the number of group changes made by females, on the microbiota in free-living, feral horses (Equus caballus) on Shackleford Banks, a barrier island off the North Carolina coast. Females leaving their groups to join new ones had fecal microbial communities that were similarly diverse but compositionally different than those of females that did not change groups. Changing groups was also associated with the increased abundance of a several bacterial genera and families. These changes may be significant as horses are heavily dependent upon their microbial communities for nutrient absorption. Though we cannot identify the particular mechanism(s) driving these changes, to the best of our knowledge, ours is the first study to demonstrate an association between acute social perturbations and the microbiota in a free-ranging mammal.

2.
Conserv Physiol ; 5(1): cox018, 2017.
Article in English | MEDLINE | ID: mdl-29977561

ABSTRACT

Due to the extirpation of their natural predators, feral horse populations have expanded across the United States, necessitating their management. Contraception of females (mares) with porcine zona pellucida (PZP) is a popular option; however, effects to physiology and behavior can be substantial. On Shackleford Banks, North Carolina, USA, treated mares have exhibited cycling during the non-breeding season and demonstrated decreased fidelity to the band stallion, but PZP's long-term effects on mare physiology and behavior remain largely unexplored. After the contraception program was suspended in this population, we examined how prior exposure to varying levels of PZP treatment impacted (1) foaling probability and foaling dates (a proxy for ovulatory cycling) from 2009 to 2014 and (2) mare fidelity to the band stallion and reproductive behavior during 2013 and 2015. Additionally, we evaluated the effects of time since the mares' last treatment on these factors. Mares receiving any level of prior PZP treatment were less likely to foal than were untreated mares. Among mares that received 1-3 PZP applications, foaling probability increased with time since last treatment before declining, at ~6 years post-treatment. Mares that received 4+ applications did not exhibit a significant increase in foaling probability with time since last treatment. Moreover, previously treated mares continued to conceive later than did untreated mares. Finally, mares previously receiving 4+ treatments changed groups more often than did untreated mares, though reproductive behavior did not differ with contraception history. Our results suggest that although PZP-induced subfertility and its associated behavioral effects can persist after the cessation of treatment, these effects can be ameliorated for some factors with less intense treatment. Careful consideration to the frequency of PZP treatment is important to maintaining more naturally functioning populations; the ability to manage populations adaptively may be compromised if females are kept subfertile for extended periods of time.

SELECTION OF CITATIONS
SEARCH DETAIL
...