Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 64(21): 15949-15972, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34705450

ABSTRACT

The NRF2-mediated cytoprotective response is central to cellular homoeostasis, and there is increasing interest in developing small-molecule activators of this pathway as therapeutics for diseases involving chronic oxidative stress. The protein KEAP1, which regulates NRF2, is a key point for pharmacological intervention, and we recently described the use of fragment-based drug discovery to develop a tool compound that directly disrupts the protein-protein interaction between NRF2 and KEAP1. We now present the identification of a second, chemically distinct series of KEAP1 inhibitors, which provided an alternative chemotype for lead optimization. Pharmacophoric information from our original fragment screen was used to identify new hit matter through database searching and to evolve this into a new lead with high target affinity and cell-based activity. We highlight how knowledge obtained from fragment-based approaches can be used to focus additional screening campaigns in order to de-risk projects through the rapid identification of novel chemical series.


Subject(s)
Carboxylic Acids/pharmacology , Drug Discovery , Kelch-Like ECH-Associated Protein 1/antagonists & inhibitors , Animals , Carboxylic Acids/chemistry , Cell Line , Humans , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/metabolism , Protein Binding , Pyrazoles , Structure-Activity Relationship
2.
J Med Chem ; 64(16): 12286-12303, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34387469

ABSTRACT

Aberrant activation of the mitogen-activated protein kinase pathway frequently drives tumor growth, and the ERK1/2 kinases are positioned at a key node in this pathway, making them important targets for therapeutic intervention. Recently, a number of ERK1/2 inhibitors have been advanced to investigational clinical trials in patients with activating mutations in B-Raf proto-oncogene or Ras. Here, we describe the discovery of the clinical candidate ASTX029 (15) through structure-guided optimization of our previously published isoindolinone lead (7). The medicinal chemistry campaign focused on addressing CYP3A4-mediated metabolism and maintaining favorable physicochemical properties. These efforts led to the identification of ASTX029, which showed the desired pharmacological profile combining ERK1/2 inhibition with suppression of phospho-ERK1/2 (pERK) levels, and in addition, it possesses suitable preclinical pharmacokinetic properties predictive of once daily dosing in humans. ASTX029 is currently in a phase I-II clinical trial in patients with advanced solid tumors.


Subject(s)
Antineoplastic Agents/therapeutic use , Indoles/therapeutic use , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Crystallography, X-Ray , Dogs , Humans , Indoles/chemical synthesis , Indoles/metabolism , Indoles/pharmacokinetics , Male , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Structure , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Mas , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
3.
Nat Chem Biol ; 8(11): 920-5, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23023261

ABSTRACT

Here we report a highly conserved new binding site located at the interface between the protease and helicase domains of the hepatitis C virus (HCV) NS3 protein. Using a chemical lead, identified by fragment screening and structure-guided design, we demonstrate that this site has a regulatory function on the protease activity via an allosteric mechanism. We propose that compounds binding at this allosteric site inhibit the function of the NS3 protein by stabilizing an inactive conformation and thus represent a new class of direct-acting antiviral agents.


Subject(s)
Allosteric Site , Viral Nonstructural Proteins/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Allosteric Site/genetics , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Dose-Response Relationship, Drug , Ligands , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Viral Nonstructural Proteins/drug effects , Viral Nonstructural Proteins/genetics
4.
J Med Chem ; 53(16): 5942-55, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20718493

ABSTRACT

Inhibitors of the chaperone Hsp90 are potentially useful as chemotherapeutic agents in cancer. This paper describes an application of fragment screening to Hsp90 using a combination of NMR and high throughput X-ray crystallography. The screening identified an aminopyrimidine with affinity in the high micromolar range and subsequent structure-based design allowed its optimization into a low nanomolar series with good ligand efficiency. A phenolic chemotype was also identified in fragment screening and was found to bind with affinity close to 1 mM. This fragment was optimized using structure based design into a resorcinol lead which has subnanomolar affinity for Hsp90, excellent cell potency, and good ligand efficiency. This fragment to lead campaign improved affinity for Hsp90 by over 1,000,000-fold with the addition of only six heavy atoms. The companion paper (DOI: 10.1021/jm100060b) describes how the resorcinol lead was optimized into a compound that is now in clinical trials for the treatment of cancer.


Subject(s)
Aminopyridines/chemistry , Antineoplastic Agents/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Models, Molecular , Phenols/chemistry , Aminopyridines/chemical synthesis , Crystallography, X-Ray , Databases, Factual , Drug Design , Ligands , Magnetic Resonance Spectroscopy , Phenols/chemical synthesis , Protein Binding , Protein Structure, Tertiary , Resorcinols/chemical synthesis , Resorcinols/chemistry , Structure-Activity Relationship
5.
J Med Chem ; 53(16): 5956-69, 2010 Aug 26.
Article in English | MEDLINE | ID: mdl-20662534

ABSTRACT

Inhibitors of the molecular chaperone heat shock protein 90 (Hsp90) are currently generating significant interest in clinical development as potential treatments for cancer. In a preceding publication (DOI: 10.1021/jm100059d ) we describe Astex's approach to screening fragments against Hsp90 and the subsequent optimization of two hits into leads with inhibitory activities in the low nanomolar range. This paper describes the structure guided optimization of the 2,4-dihydroxybenzamide lead molecule 1 and details some of the drug discovery strategies employed in the identification of AT13387 (35), which has progressed through preclinical development and is currently being tested in man.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzamides/chemical synthesis , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Isoindoles/chemical synthesis , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Benzamides/pharmacokinetics , Benzamides/pharmacology , Cell Line , Crystallography, X-Ray , Drug Design , Drug Screening Assays, Antitumor , Drug Stability , Female , HCT116 Cells , HSP90 Heat-Shock Proteins/chemistry , Humans , Isoindoles/pharmacokinetics , Isoindoles/pharmacology , Ligands , Mice , Mice, Inbred BALB C , Mice, Nude , Models, Molecular , Molecular Conformation , Neoplasm Transplantation , Solubility , Structure-Activity Relationship , Tissue Distribution , Transplantation, Heterologous
6.
J Med Chem ; 52(2): 379-88, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19143567

ABSTRACT

Here, we describe the identification of a clinical candidate via structure-based optimization of a ligand efficient pyrazole-benzimidazole fragment. Aurora kinases play a key role in the regulation of mitosis and in recent years have become attractive targets for the treatment of cancer. X-ray crystallographic structures were generated using a novel soakable form of Aurora A and were used to drive the optimization toward potent (IC(50) approximately 3 nM) dual Aurora A/Aurora B inhibitors. These compounds inhibited growth and survival of HCT116 cells and produced the polyploid cellular phenotype typically associated with Aurora B kinase inhibition. Optimization of cellular activity and physicochemical properties ultimately led to the identification of compound 16 (AT9283). In addition to Aurora A and Aurora B, compound 16 was also found to inhibit a number of other kinases including JAK2 and Abl (T315I). This compound demonstrated in vivo efficacy in mouse xenograft models and is currently under evaluation in phase I clinical trials.


Subject(s)
Benzimidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Urea/analogs & derivatives , Animals , Aurora Kinase A , Aurora Kinase B , Aurora Kinases , Benzimidazoles/chemistry , Benzimidazoles/pharmacokinetics , Cell Line, Tumor , Crystallography, X-Ray , Drug Evaluation, Preclinical , Humans , Mice , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Urea/chemistry , Urea/pharmacokinetics , Urea/pharmacology
7.
J Med Chem ; 51(16): 4986-99, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18656911

ABSTRACT

The application of fragment-based screening techniques to cyclin dependent kinase 2 (CDK2) identified multiple (>30) efficient, synthetically tractable small molecule hits for further optimization. Structure-based design approaches led to the identification of multiple lead series, which retained the key interactions of the initial binding fragments and additionally explored other areas of the ATP binding site. The majority of this paper details the structure-guided optimization of indazole (6) using information gained from multiple ligand-CDK2 cocrystal structures. Identification of key binding features for this class of compounds resulted in a series of molecules with low nM affinity for CDK2. Optimisation of cellular activity and characterization of pharmacokinetic properties led to the identification of 33 (AT7519), which is currently being evaluated in clinical trials for the treatment of human cancers.


Subject(s)
Cyclin-Dependent Kinase 2/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Piperidines/chemical synthesis , Pyrazoles/chemical synthesis , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/therapeutic use , Humans , Mice , Piperidines/pharmacokinetics , Piperidines/therapeutic use , Pyrazoles/pharmacokinetics , Pyrazoles/therapeutic use , Structure-Activity Relationship
8.
J Med Chem ; 48(2): 414-26, 2005 Jan 27.
Article in English | MEDLINE | ID: mdl-15658855

ABSTRACT

We describe the structure-guided optimization of the molecular fragments 2-amino-3-benzyloxypyridine 1 (IC(50) 1.3 mM) and 3-(2-(4-pyridyl)ethyl)indole 2 (IC(50) 35 microM) identified using X-ray crystallographic screening of p38alpha MAP kinase. Using two separate case studies, the article focuses on the key compounds synthesized, the structure-activity relationships and the binding mode observations made during this optimization process, resulting in two potent lead series that demonstrate significant increases in activity. We describe the process of compound elaboration either through the growing out from fragments into adjacent pockets or through the conjoining of overlapping fragments and demonstrate that we have exploited the mobile conserved activation loop, consisting in part of Asp168-Phe169-Gly170 (DFG), to generate significant improvements in potency and kinase selectivity.


Subject(s)
Aminopyridines/chemistry , Drug Design , Enzyme Inhibitors/chemistry , Indoles/chemistry , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Aminopyridines/chemical synthesis , Aminopyridines/pharmacology , Cell Line, Tumor , Crystallography, X-Ray , Databases, Factual , Humans , Indoles/chemical synthesis , Indoles/pharmacology , Ligands , Models, Molecular , Molecular Structure , Protein Binding , Quantitative Structure-Activity Relationship , p38 Mitogen-Activated Protein Kinases/chemistry
9.
Bioorg Med Chem Lett ; 12(4): 641-3, 2002 Feb 25.
Article in English | MEDLINE | ID: mdl-11844690

ABSTRACT

A versatile route for the synthesis of homochiral alpha-ketoamide analogues of amino acids is described. Incorporation of this functionality into peptide sequences using either solution or solid-phase chemistry resulted in potent inhibitors of the Hepatitis C Virus NS3 proteinase.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acids , Combinatorial Chemistry Techniques , Enzyme Inhibitors/pharmacology , Fluorenes , Hepacivirus/enzymology , Humans , Inhibitory Concentration 50 , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...