Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Microbiol ; 8: 12, 2008 Jan 23.
Article in English | MEDLINE | ID: mdl-18215272

ABSTRACT

BACKGROUND: The Yersinia enterocolitica flagellar master regulator FlhD/FlhC affects the expression levels of non-flagellar genes, including 21 genes that are involved in central metabolism. The sigma factor of the flagellar system, FliA, has a negative effect on the expression levels of seven plasmid-encoded virulence genes in addition to its positive effect on the expression levels of eight of the flagellar operons. This study investigates the phenotypes of flhD and fliA mutants that result from the complex gene regulation. RESULTS: Phenotypes relating to central metabolism were investigated with Phenotype MicroArrays. Compared to the wild-type strain, isogenic flhD and fliA mutants exhibited increased growth on purines and reduced growth on N-acetyl-D-glucosamine and D-mannose, when used as a sole carbon source. Both mutants grew more poorly on pyrimidines and L-histidine as sole nitrogen source. Several intermediates of the tricarboxylic acid and the urea cycle, as well as several dipeptides, provided differential growth conditions for the two mutants. Gene expression was determined for selected genes and correlated with the observed phenotypes. Phenotypes relating to virulence were determined with the chicken embryo lethality assay. The assay that was previously established for Escherichia coli strains was modified for Y. enterocolitica. The flhD mutant caused reduced chicken embryo lethality when compared to wild-type bacteria. In contrast, the fliA mutant caused wild-type lethality. This indicates that the virulence phenotype of the flhD mutant might be due to genes that are regulated by FlhD/FlhC but not FliA, such as those that encode the flagellar type III secretion system. CONCLUSION: Phenotypes of flhD and fliA mutants are related to central metabolism and virulence and correlate with gene regulation.


Subject(s)
Flagella/genetics , Gene Expression Regulation, Bacterial , Models, Biological , Yersinia enterocolitica/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chick Embryo , Chickens , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis/methods , Transcription, Genetic , Virulence/genetics , Yersinia enterocolitica/chemistry , Yersinia enterocolitica/pathogenicity
2.
Source Code Biol Med ; 1: 8, 2006 Nov 29.
Article in English | MEDLINE | ID: mdl-17147788

ABSTRACT

BACKGROUND: The large amount of genomics data that have accumulated over the past decade require extensive data mining. However, the global nature of data mining, which includes pattern mining, poses difficulties for users who want to study specific questions in a more local environment. This creates a need for techniques that allow a localized analysis of globally determined patterns. RESULTS: We developed a tool that determines and evaluates global patterns based on protein property and network information, while providing all the benefits of a perspective that is targeted at biologist users with specific goals and interests. Our tool uses our own data mining techniques, integrated into current visualization and navigation techniques. The functionality of the tool is discussed in the context of the transcriptional network of regulation in the enteric bacterium Escherichia coli. Two biological questions were asked: (i) Which functional categories of proteins (identified by hidden Markov models) are regulated by a regulator with a specific domain? (ii) Which regulators are involved in the regulation of proteins that contain a common hidden Markov model? Using these examples, we explain the gene-centered and pattern-centered analysis that the tool permits. CONCLUSION: In summary, we have a tool that can be used for a wide variety of applications in biology, medicine, or agriculture. The pattern mining engine is global in the way that patterns are determined across the entire network. The tool still permits a localized analysis for users who want to analyze a subportion of the total network. We have named the tool BISON (Bio-Interface for the Semi-global analysis Of Network patterns).

SELECTION OF CITATIONS
SEARCH DETAIL
...