Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 46(9): 1952-1965, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31175396

ABSTRACT

PURPOSE: Synaptic abnormalities have been implicated in a variety of neuropsychiatric disorders, including epilepsy, Alzheimer's disease, and schizophrenia. Hence, PET imaging of the synaptic vesicle glycoprotein 2A (SV2A) may be a valuable in vivo biomarker for neurologic and psychiatric diseases. We previously developed [11C]UCB-J, a PET radiotracer with high affinity and selectivity toward SV2A; however, the short radioactive half-life (20 min for 11C) places some limitations on its broader application. Herein, we report the first synthesis of the longer-lived 18F-labeled counterpart (half-life: 110 min), [18F]UCB-J, and its evaluation in nonhuman primates. METHODS: [18F]UCB-J was synthesized from the iodonium precursors. PET imaging experiments with [18F]UCB-J were conducted in rhesus monkeys to assess the pharmacokinetic and in vivo binding properties. Arterial samples were taken for analysis of radioactive metabolites and generation of input functions. Regional time-activity curves were analyzed using the one-tissue compartment model to derive regional distribution volumes and binding potentials for comparison with [11C]UCB-J. RESULTS: [18F]UCB-J was prepared in high radiochemical and enantiomeric purity, but low radiochemical yield. Evaluation in nonhuman primates indicated that the radiotracer displayed pharmacokinetic and imaging characteristics similar to those of [11C]UCB-J, with moderate metabolism rate, high brain uptake, fast and reversible binding kinetics, and high specific binding signals. CONCLUSION: We have accomplished the first synthesis of the novel SV2A radiotracer [18F]UCB-J. [18F]UCB-J is demonstrated to be an excellent imaging agent and may prove to be useful for imaging and quantification of SV2A expression, and synaptic density, in humans.


Subject(s)
Fluorine Radioisotopes/chemistry , Membrane Glycoproteins/metabolism , Positron-Emission Tomography , Pyridines/chemical synthesis , Pyrrolidinones/chemical synthesis , Animals , Chemistry Techniques, Synthetic , Female , Macaca mulatta , Male , Pyridines/chemistry , Pyrrolidinones/chemistry , Radiochemistry
2.
J Nucl Med ; 57(5): 777-84, 2016 05.
Article in English | MEDLINE | ID: mdl-26848175

ABSTRACT

UNLABELLED: The synaptic vesicle glycoprotein 2A (SV2A) is found in secretory vesicles in neurons and endocrine cells. PET with a selective SV2A radiotracer will allow characterization of drugs that modulate SV2A (e.g., antiepileptic drugs) and potentially could be a biomarker of synaptic density (e.g., in neurodegenerative disorders). Here we describe the synthesis and characterization of the SV2A PET radiotracer (11)C-UCB-J ((R)-1-((3-((11)C-methyl-(11)C)pyridin-4-yl)methyl)-4-(3,4,5-trifluorophenyl)pyrrolidin-2-one) in nonhuman primates, including whole-body biodistribution. METHODS: (11)C-UCB-J was prepared by C-(11)C-methylation of the 3-pyridyl trifluoroborate precursor with (11)C-methyl iodide via the Suzuki-Miyaura cross-coupling method. Rhesus macaques underwent multiple scans including coinjection with unlabeled UCB-J (17, 50, and 150 µg/kg) or preblocking with the antiepileptic drug levetiracetam at 10 and 30 mg/kg. Scans were acquired for 2 h with arterial sampling and metabolite analysis to measure the input function. Regional volume of distribution (VT) was estimated using the 1-tissue-compartment model. Target occupancy was assessed using the occupancy plot; the dissociation constant (Kd) was determined by fitting self-blocking occupancies to a 1-site model, and the maximum number of receptor binding sites (Bmax) values were derived from baseline VT and from the estimated Kd and the nondisplaceable distribution volume (VND). RESULTS: (11)C-UCB-J was synthesized with greater than 98% purity. (11)C-UCB-J exhibited high free fraction (0.46 ± 0.02) and metabolized at a moderate rate (39% ± 5% and 24% ± 3% parent remaining at 30 and 90 min) in plasma. In the monkey brain, (11)C-UCB-J displayed high uptake and fast kinetics. VT was high (∼25-55 mL/cm(3)) in all gray matter regions, consistent with the ubiquitous expression of SV2A. Preblocking with 10 and 30 mg/kg of levetiracetam resulted in approximately 60% and 90% occupancy, respectively. Analysis of the self-blocking scans yielded a Kd estimate of 3.4 nM and Bmax of 125-350 nM, in good agreement with the in vitro inhibition constant (Ki) of 6.3 nM and regional Bmax in humans. Whole-body biodistribution revealed that the liver and the brain are the dose-limiting organs for males and females, respectively. CONCLUSION: (11)C-UCB-J exhibited excellent characteristics as an SV2A PET radiotracer in nonhuman primates. The radiotracer is currently undergoing first-in-human evaluation.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Membrane Glycoproteins/metabolism , Positron-Emission Tomography , Pyridines/chemical synthesis , Pyrrolidines/chemical synthesis , Pyrrolidinones/chemical synthesis , Animals , Chemistry Techniques, Synthetic , Female , Humans , Macaca mulatta , Male , Permeability , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacokinetics , Pyrrolidines/chemistry , Pyrrolidines/metabolism , Pyrrolidines/pharmacokinetics , Pyrrolidinones/chemistry , Pyrrolidinones/metabolism , Pyrrolidinones/pharmacokinetics , Radiochemistry , Rats , Tissue Distribution
3.
ChemMedChem ; 9(4): 693-8, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24446373

ABSTRACT

The role of the synaptic vesicle protein 2A (SV2A) protein, target of the antiepileptic drug levetiracetam, is still mostly unknown. Considering its potential to provide in vivo functional insights into the role of SV2A in epileptic patients, the development of an SV2A positron emission tomography (PET) tracer has been undertaken. Using a 3D pharmacophore model based on close analogues of levetiracetam, we report the rationale design of three heterocyclic non-acetamide lead compounds, UCB-A, UCB-H and UCB-J, the first single-digit nanomolar SV2A ligands with suitable properties for development as PET tracers.


Subject(s)
Acetamides , Drug Discovery , Heterocyclic Compounds , Membrane Glycoproteins/analysis , Nerve Tissue Proteins/analysis , Positron-Emission Tomography , Acetamides/chemical synthesis , Acetamides/chemistry , Animals , Heterocyclic Compounds/chemical synthesis , Heterocyclic Compounds/chemistry , Humans , Ligands , Male , Membrane Glycoproteins/metabolism , Models, Molecular , Molecular Structure , Nerve Tissue Proteins/metabolism , Radioactive Tracers , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...