Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg ; 138(2): 465-475, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35901671

ABSTRACT

OBJECTIVE: The authors' objective was to investigate the impact of the global COVID-19 pandemic on hospital presentation and process of care for the treatment of traumatic brain injuries (TBIs). Improved understanding of these effects will inform sociopolitical and hospital policies in response to future pandemics. METHODS: The Michigan Trauma Quality Improvement Program (MTQIP) database, which contains data from 36 level I and II trauma centers in Michigan and Minnesota, was queried to identify patients who sustained TBI on the basis of head/neck Abbreviated Injury Scale (AIS) codes during the periods of March 13 through July 2 of 2017-2019 (pre-COVID-19 period) and March 13, 2020, through July 2, 2020 (COVID-19 period). Analyses were performed to detect differences in incidence, patient characteristics, injury severity, and outcomes. RESULTS: There was an 18% decrease in the rate of encounters with TBI in the first 8 weeks (March 13 through May 7), followed by a 16% increase during the last 8 weeks (May 8 through July 2), of our COVID-19 period compared with the pre-COVID-19 period. Cumulatively, there was no difference in the rates of encounters with TBI between the COVID-19 and pre-COVID-19 periods. Severity of TBI, as measured with maximum AIS score for the head/neck region and Glasgow Coma Scale score, was also similar between periods. During the COVID-19 period, a greater proportion of patients with TBI presented more than a day after sustaining their injuries (p = 0.046). COVID-19 was also associated with a doubling in the decubitus ulcer rate from 1.0% to 2.1% (p = 0.002) and change in the distribution of discharge status (p = 0.01). Multivariable analysis showed no differences in odds of death/hospice discharge, intensive care unit stay of at least a day, or need for a ventilator for at least a day between the COVID-19 and pre-COVID-19 periods. CONCLUSIONS: During the early months of the COVID-19 pandemic, the number of patients who presented with TBI was initially lower than in the years 2017-2019 prior to the pandemic. However, there was a subsequent increase in the rate of encounters with TBI, resulting in overall similar rates of TBI between March 13 through July 2 during the COVID-19 period and during the pre-COVID-19 period. The COVID-19 cohort was also associated with negative impacts on time to presentation, rate of decubitus ulcers, and discharge with supervision. Policies in response to future pandemics must consider the resources necessary to care for patients with TBI.


Subject(s)
Brain Injuries, Traumatic , COVID-19 , Humans , Pandemics , Michigan/epidemiology , Quality Improvement , Retrospective Studies , COVID-19/epidemiology , Brain Injuries, Traumatic/epidemiology , Brain Injuries, Traumatic/therapy , Glasgow Coma Scale
2.
J Neurotrauma ; 39(15-16): 1015-1029, 2022 08.
Article in English | MEDLINE | ID: mdl-35403432

ABSTRACT

Epidural spinal cord stimulation (eSCS) has been recently recognized as a potential therapy for chronic spinal cord injury (SCI). eSCS has been shown to uncover residual pathways within the damaged spinal cord. The purpose of this review is to summarize the key findings to date regarding the use of eSCS in SCI. Searches were carried out using MEDLINE, EMBASE, and Web of Science database and reference lists of the included articles. A combination of medical subject heading terms and keywords was used to find studies investigating the use of eSCS in SCI patients to facilitate volitional movement and to restore autonomic function. The risk of bias was assessed using Risk Of Bias In Non-Randomized Studies of Interventions tool for nonrandomized studies. We were able to include 40 articles that met our eligibility criteria. The studies included a total of 184 patient experiences with incomplete or complete SCI. The majority of the studies used the Medtronic 16 paddle lead. Around half of the studies reported lead placement between T11- L1. We included studies that assessed motor (n = 28), autonomic (n = 13), and other outcomes (n = 10). The majority of the studies reported improvement in outcomes assessed. The wide range of included outcomes demonstrates the effectiveness of eSCS in treating a diverse SCI population. However, the current studies cannot definitively conclude which patients benefit the most from this intervention. Further study in this area is needed to allow improvement of the eSCS technology and allow it to be more widely available for chronic SCI patients.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Epidural Space , Humans , Movement , Spinal Cord , Spinal Cord Injuries/therapy
4.
J Neurotrauma ; 38(6): 777-788, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33107383

ABSTRACT

Chronic spinal cord injury (SCI) is a devastating medical condition. In the acute phase after injury, there is cell loss resulting in chronic axonal damage and loss of sensory and motor function including loss of oligodendrocytes that results in demyelination of axons and further dysfunction. In the chronic phase, the inhibitory environment within the lesion including the glial scar can arrest axonal growth and regeneration and can also potentially affect transplanted cells. We hypothesized that glial scar ablation (GSA) along with cell transplantation may be required as a combinatorial therapy to achieve functional recovery, and therefore we proposed to examine the survival and fate of human induced pluripotent stem cell (iPSC) derived pre-oligodendrocyte progenitor cells (pre-OPCs) transplanted in a model of chronic SCI, whether this was affected by GSA, and whether this combination of treatments would result in functional recovery. In this study, chronically injured athymic nude (ATN) rats were allocated to one of three treatment groups: GSA only, pre-OPCs only, or GSA+pre-OPCs. We found that human iPSC derived pre-OPCs were multi-potent and retained the ability to differentiate into mainly oligodendrocytes or neurons when transplanted into the chronically injured spinal cords of rats. Twelve weeks after cell transplantation, we observed that more of the transplanted cells differentiated into oligodendrocytes when the glial scar was ablated compared with no GSA. Further, we also observed that a higher percentage of transplanted cells differentiated into V2a interneurons and motor neurons in the pre-OPCs only group when compared with GSA+pre-OPCs. This suggests that the local environment created by ablation of the glial scar may have a significant effect on the fate of cells transplanted into the injury site.


Subject(s)
Gliosis/therapy , Motor Neurons/physiology , Oligodendrocyte Precursor Cells/physiology , Oligodendroglia/physiology , Spinal Cord Injuries/therapy , Stem Cell Transplantation/methods , Animals , Cells, Cultured , Female , Fluorescent Dyes/administration & dosage , Gliosis/pathology , Humans , Induced Pluripotent Stem Cells/chemistry , Induced Pluripotent Stem Cells/physiology , Induced Pluripotent Stem Cells/transplantation , Motor Neurons/chemistry , Oligodendrocyte Precursor Cells/chemistry , Oligodendrocyte Precursor Cells/transplantation , Oligodendroglia/chemistry , Rats , Rose Bengal/administration & dosage , Spinal Cord Injuries/pathology , Thoracic Vertebrae/injuries
SELECTION OF CITATIONS
SEARCH DETAIL
...