Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(11): 1261, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37782376

ABSTRACT

The current study investigated the use of VNIR-SWIR (visible/near infrared to short-wavelength infrared: 400-2500 nm) spectroscopy for predicting trace metals in overbank sediments collected in the study site. Here, we (i) derived spectral absorption feature parameters (SAFPs) from measured ground spectra for correlation with trace metal (Pb, Cd, As, and Cu) contents in overbank sediments, (ii) built univariate regression models to predict trace metal concentrations using the SAFPs, and (iii) evaluated the predictive capacities of the regression models. The derived SAFPs associated with goethite in overbank sediments were Depth433b, Asym433b, and Width433b, and those associated with kaolinite in overbank sediments were Depth1366b, Asym1366b, Width1366b, Depth2208b, Asym2208b, and Width2208b. Cadmium in the overbank sediments showed the strongest correlations with the goethite-related SAFPs, whereas Pb, As, and Cu showed strong correlations with goethite- and kaolinite-related SAFPs. The best predictive models were obtained for Cu (R2 = 0.73, SEE = 0.15) and Pb (R2 = 0.73, SEE = 0.21), while weaker models were obtained for As (R2 = 0.46, SEE = 0.31) and Cd (R2 = 0.17, SEE = 0.81). The results suggest that trace metals can be predicted indirectly using the SAFPs associated with goethite and kaolinite. This is an important benefit of VNIR-SWIR spectroscopy considering the difficulty in analyzing "trace" metal concentrations, on large scales, using conventional geochemical methods.


Subject(s)
Cadmium , Trace Elements , Kaolin , Lead , Rivers , Environmental Monitoring , Spectrum Analysis , Coal
2.
Sci Total Environ ; 889: 164015, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37172831

ABSTRACT

The research of high-quality agricultural products rich in selenium and low in cadmium (Se-rich and Cd-low, respectively) is related directly to the value of agricultural products and people's food safety. Now it is still challenging to carry out development planning for Se-rich rice. By fuzzy weights-of-evidence method, the geochemical soil survey data of Se and Cd from 27,833 surface soil samples and 804 rice samples was used to predict the probability of areas, in Hubei Province, China, that will likely yield (a) Se-rich and Cd-low rice, (b) Se-rich and Cd-normal rice and (c) Se-rich and Cd-high rice. The areas predicted to likely yield Se-rich and Cd-high rice, Se-rich and Cd-normal rice, and high quality (i.e., Se-rich and Cd-low) rice cover 6542.3 km2 (5.9 %), 35,845.9 km2 (32.6 %), 12,379.7 km2 (11.3 %), respectively, of the surveyed region. According to the predictive distribution probability mapping of Se and Cd, this paper gives preliminary suggestions on the use of endogenous and exogenous Se, and Cd-reduction measures in planting Se-rich rice in different regions of Hubei Province. This study provides a new perspective for rational rice planting of Se-rich agricultural products, and it lays a foundation for the effective implementation of a geochemical soil investigation engineering project, which is of great significance for improving the economic value of Se-rich agricultural products and sustainable utilization of Se land resources.


Subject(s)
Oryza , Selenium , Soil Pollutants , Humans , Cadmium/analysis , Soil Pollutants/analysis , Selenium/analysis , Soil , China
3.
Environ Sci Pollut Res Int ; 28(45): 64652-64665, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34318411

ABSTRACT

Selenium (Se), iron (Fe), and humic acid (HA) are beneficial fertilizers that inhibit cadmium (Cd) uptake in crops and are crucial for agricultural yields as well as human health. However, the joined effect of Se, Fe, and HA on Cd uptake in rice are still poorly understood. Therefore, a hydroponic culture experiment was established to evaluate the combined effect of Se (Se4+ or Se6+), Fe, and HA on the biomass, Cd uptake, and Cd translocation of/in rice seedlings. Compared to Se6+ application, Se4+ application in most treatments resulted in lower Cd translocations from roots to shoots, leading to a significant decrease in shoot Cd concentrations. Compared to the treatments with Se4+ or Fe2+ application, joined application of Se4+ and Fe2+ inhibited Cd uptake in shoots by decreasing Cd adsorption onto (iron plaque) and uptake by roots, and alleviating Cd translocation from root to shoot. Compared to the treatments with Se6+ or Fe2+ application, joined application of Se6+ and Fe2+ inhibited Cd uptake in shoots by sequestering (retaining) Cd onto root surface (iron plaque). HA inhibited Cd uptake in all treatments by decreasing the bioavailability of Cd in the nutrient solution through complexation. The simultaneous application of Se, Fe, and HA decreased the shoot Cd concentrations the most, followed by the combined application of two fertilizers and their individual application; the mean shoot Cd concentration in the Fe-SeIV-HA2 treatment was the lowest among all the treatments, at only 11.39 % of those in the control treatments. The 3-way ANOVA results indicated that the Cd concentrations in shoots were significantly affected by Se, Fe, HA, and certain of their interactions (Fe×Se and Se×HA) (p< 0.05). The above findings suggest that the joined application of Se, Fe, and HA ameliorated Cd uptake mainly by inhibiting Cd adsorption onto (iron plaque) and uptake by roots and the translocation from roots to shoots (Fe×Se4+), retaining (sequestering) Cd in iron plaque (Fe×Se6+), and decreasing Cd availability in nutrient solution (HA).


Subject(s)
Oryza , Selenium , Soil Pollutants , Cadmium , Humans , Humic Substances , Hydroponics , Iron/analysis , Plant Roots/chemistry , Seedlings/chemistry
4.
Sci Rep ; 9(1): 8122, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31133655

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

5.
Sci Rep ; 9(1): 4410, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30867539

ABSTRACT

Whereas the mechanism of fluid flow, and thus structural control, linked with mineral deposit formation is quite understood, the specific structures that likely provided controls on mineralization at certain geographic scales are not readily known for a given region unless it is well-explored. This contributes uncertainty in mineral prospectivity analysis in poorly-explored regions (or greenfields). Here, because the spatial distribution of mineral deposits has been postulated to be fractals (i.e., the patterns of these features are self-similar across a range of spatial scales), we show for the first time that micro-geochemical anomalies (as proxies of micro-scale patterns of ore minerals), from few discrete parts of the Sossego iron-oxide copper-gold (IOCG) deposit in the Carajás Mineral Province (CMP) of Brazil, exhibit trends of macro-scale faults that are known to have controlled IOCG mineralization in the CMP. The methodology described here, which led to this novel finding, would help towards detecting mineral exploration targets as well as help towards understanding structural controls on mineralization in greenfields.

6.
Sci Rep ; 7(1): 11842, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28928391

ABSTRACT

Most bauxite in China is located upon the karst surface, yet the relation between karstification process and bauxite formation is barely known. Here we discuss how the relation affects the karst and bauxite evolution through analyzing distributions of orebody parameters from 9,007 exploration wells (434 orebodies) in western Guangxi, South China block. In high-elevation karst terrain dominated by peaks, orebodies have greater average thickness, lower Al2O3 and higher Fe2O3T than those in low-elevation region dominated by depressions. Principal component and multifractal analyses show that the Al2O3, Fe2O3T and LOI and the orebody thickness, determined by depression geometry, have more even distributions in high-elevation terrain. This explains that the interaction between the oxidized, alkaline water in karst surface and the ferrous clay minerals that released H+ during bauxite secondary weathering was more intensive in high-elevation terrain than in low-elevation one. The interaction with self-organized nature is considered responsible for the even development of karstic depressions and bauxite orebody thicknesses in high-elevation terrain. In comparison, SiO2 distribution is more even in low-elevation terrain, where connected depressions near the phreatic zone facilitated SiO2 mobilization and even distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...