Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Addict Biol ; 27(3): e13166, 2022 05.
Article in English | MEDLINE | ID: mdl-35470549

ABSTRACT

Levamisole is a veterinary anthelmintic drug and a common adulterant of misused drugs. This study analyses the lethal, antinociceptive and haematological effects produced by acute or repeated levamisole administration by itself or combined with morphine. Independent groups of male Swiss Webster mice were i.p. injected with 100 mg/kg morphine, 31.6 mg/kg levamisole (lethal doses at 10%, LD10 ) or the same doses combined. Naloxone pretreatment (10 mg/kg, i.p.) prevented morphine-induced death, as did 2.5 mg/kg, i.p. mecamylamine with levamisole. Co-administration of levamisole and morphine (Lvm + Mor) increased lethality from 10% to 80%. This augmented effect was prevented by 30 mg/kg, i.p. naloxone and reduced with 10 mg/kg naloxone plus 2.5 mg/kg, i.p. mecamylamine. In independent groups of mice, 17.7 mg/kg, i.p. levamisole antagonized the acute morphine's antinociceptive effect evaluated in the tail-flick test. Repeated 17.7 mg/kg levamisole administration (2×/day/3 weeks) did not affect tolerance development to morphine (10 mg/kg, 3×/day/1 week). Blood samples obtained from mice repeatedly treated with levamisole showed leukopenia and neutropenia. Morphine also produced neutropenia, increased erythrocyte count and other related parameters (e.g. haemoglobin). Lvm + Mor had similar effects on leukocyte and neutrophil counts to those seen with levamisole only, but no erythrocyte-related alterations were evident. Blood chemistry analysis did not indicate liver damage but suggested some degree of electrolyte balance impairment. In conclusion, Lvm + Mor increased death risk, altered morphine-induced antinociceptive effects and produced haematologic abnormalities. The importance of studying combinations of drugs of abuse lies in the fact that drug users frequently combine drugs, which are commonly adulterated.


Subject(s)
Morphine , Neutropenia , Analgesics , Animals , Levamisole/pharmacology , Male , Mecamylamine , Mice , Morphine/pharmacology , Naloxone/pharmacology , Neutropenia/chemically induced
2.
Cell Mol Neurobiol ; 42(3): 677-694, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32926257

ABSTRACT

Morphine promotes neuroinflammation after NOD-like receptor protein 3 (NLRP3) oligomerization in glial cells, but the capacity of other opioids to induce neuroinflammation and its relationship to the development of analgesic tolerance is unknown. We studied the effects of morphine and fentanyl on NLRP3 inflammasome activation in glial and neuronal cells in the dorsal raphe nucleus (DRN), a region involved in pain regulation. Male Wistar rats received i.p. injections of morphine (10 mg/kg) or fentanyl (0.1 mg/kg) 3 × daily for 7 days and were tested for nociception. Two hours after the last (19th) administration, we analyzed NLRP3 oligomerization, caspase-1 activation and gasdermin D-N (GSDMD-N) expression in microglia (CD11b positive cells), astrocytes (GFAP-positive cells) and neurons (NeuN-positive cells). Tolerance developed to both opioids, but only fentanyl produced hyperalgesia. Morphine and fentanyl activated NLRP3 inflammasome in astrocytes and serotonergic (TPH-2-positive) neurons, but fentanyl effects were more pronounced. Both opioids increased GFAP and CD11b immunoreactivity, caspase-1 and GSDMD activation, indicating pyroptotic cell death. The opioid receptor antagonist (-)-naloxone, but not the TLR4 receptor antagonist (+)-naloxone, prevented microglia activation and NLRP3 oligomerization. Only (+)-naloxone prevented astrocytes' activation. The anti-inflammatory agent minocycline and the NLRP3 inhibitor MCC950 delayed tolerance to morphine and fentanyl antinociception and prevented fentanyl-induced hyperalgesia. MCC950 also prevented opioid-induced NLRP3 oligomerization. In conclusion, morphine and fentanyl differentially induce cell-specific activation of NLRP3 inflammasome and pyroptosis in the DRN through TLR4 receptors in astrocytes and through opioid receptors in neurons, indicating that neuroinflammation is involved in opioid-induced analgesia and fentanyl-induced hyperalgesia after repeated administrations.


Subject(s)
Fentanyl , Morphine , Analgesics, Opioid/pharmacology , Animals , Dorsal Raphe Nucleus/metabolism , Fentanyl/pharmacology , Male , Morphine/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Pyroptosis , Rats , Rats, Wistar , Receptors, Opioid/metabolism , Toll-Like Receptor 4/metabolism
3.
Neurotoxicology ; 87: 24-29, 2021 12.
Article in English | MEDLINE | ID: mdl-34478770

ABSTRACT

Opioid overdoses (ODs) are increasing in Mexico's northern border. Because naloxone is usually not available, witnesses inject common salt (NaCl) into a vein of OD victims in an attempt to help them regain consciousness. Despite this widespread practice, no preclinical studies have addressed the efficacy of NaCl as an opioid antidote. Here we tested saline solutions at different concentrations. Because the highest (31.6 %) caused tail necrosis, we selected 17.7 % as a hypertonic saline solution (HSS) to determine if it could prevent the lethal effect of morphine (Mor), fentanyl (Fen), or Mor + Fen in adult Wistar male rats. We also evaluated if NaCl could modify the opioid antagonist effect of naloxone. Our results show that HSS: a) sensitizes animals to thermal but not mechanical stimuli; b) does not prevent mortality caused by high morphine or fentanyl doses; c) decreases the latency to recovery from the sedative effects caused by low doses of morphine or fentanyl; and d) increases naloxone's efficacy to prevent the lethality produced by Mor or Fen, but not by Mor + Fen. These results suggest that HSS is marginally effective in shortening the recovery time from nonfatal opioid ODs and increases naloxone's efficacy to counteract opioid-induced ODs.


Subject(s)
Opiate Overdose/drug therapy , Saline Solution, Hypertonic/therapeutic use , Animals , Dose-Response Relationship, Drug , Fentanyl/toxicity , Injections, Intravenous , Male , Morphine/toxicity , Naloxone/pharmacology , Pain Measurement , Rats , Rats, Wistar , Saline Solution, Hypertonic/administration & dosage
4.
Toxicol Appl Pharmacol ; 395: 114980, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32234516

ABSTRACT

Toluene can be intentionally misused by adolescents to experience psychoactive effects. Toluene has a complex mechanism of action and broad behavioral effects, among which memory impairment is reported consistently. We have previously reported that repeated toluene inhalation (8000 ppm) increases layer 5 prelimbic pyramidal cells' excitability in the medial prefrontal cortex (mPFC) of adolescent rats. Toluene also produces reactive oxygen species (ROS), which activate glial cells. Here, we tested the hypothesis that the anti-inflammatory agent minocycline would decrease toluene's effects because it inhibits NF-κB (nuclear factor enhancer of the kappa light chains of activated B cells) and reduces pro-inflammatory cytokine and ROS production. Our results show that minocycline (50 mg/kg, ip, for 10 days) prevents the hyperexcitability of mPFC neurons observed after repeated 8000 ppm toluene exposure (30 min/day, 2×/day for 10 days). Minocycline prevents toluene-induced hyperexcitability by a mechanism that averts the loss of the slow calcium-dependent potassium current, and normalizes mPFC neurons' firing frequency. These effects are accompanied by significant decreased expression of astrocytes and activated microglia in the mPFC, reduced NLRP3 inflammasome activation and mRNA expression levels of the pro-inflammatory cytokine interleukin 1ß (IL-1ß), as well as increased mRNA expression of the anti-inflammatory cytokine transforming growth factor ß (TGF-ß). Minocycline also prevents toluene-induced memory impairment in adolescent rats in the passive avoidance task and the temporal order memory test in which the mPFC plays a central role. These results show that neuroinflammation produces several effects of repeated toluene administration at high concentrations, and minocycline can significantly prevent them.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Memory Disorders/prevention & control , Minocycline/administration & dosage , Neurons/drug effects , Prefrontal Cortex/drug effects , Toluene/toxicity , Administration, Inhalation , Animals , Gene Expression/drug effects , Inhalant Abuse , Interleukin-1beta/genetics , Male , Memory Disorders/chemically induced , NLR Family, Pyrin Domain-Containing 3 Protein/physiology , Neurons/physiology , Prefrontal Cortex/pathology , Prefrontal Cortex/physiopathology , Rats , Rats, Wistar , Reactive Oxygen Species/antagonists & inhibitors , Toluene/administration & dosage , Transforming Growth Factor beta/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...