Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Heliyon ; 10(3): e25838, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38371961

ABSTRACT

CO2 emissions play a crucial role in international politics. Countries enter into agreements to reduce the amount of pollution emitted into the atmosphere. Energy generation is one of the main contributors to pollution and is generally considered the main cause of climate change. Despite the interest in reducing CO2 emissions, few studies have focused on investigating energy pricing technologies. This article analyzes the technologies used to meet the demand for electricity from 2016 to 2021. The analysis is based on data provided by the Spanish Electricity System regulator, using statistical and clustering techniques. The objective is to establish the relationship between the level of pollution of electricity generation technologies and the hourly price and demand. Overall, the results suggest that there are two distinct periods with respect to the technologies used in the studied years, with a trend toward the use of cleaner technologies and a decrease in power generation using fossil fuels. It is also surprising that in the years 2016 to 2018, the most polluting technologies offered the cheapest prices.

2.
Int J Neural Syst ; 31(3): 2130001, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33588711

ABSTRACT

In recent years, deep learning techniques have outperformed traditional models in many machine learning tasks. Deep neural networks have successfully been applied to address time series forecasting problems, which is a very important topic in data mining. They have proved to be an effective solution given their capacity to automatically learn the temporal dependencies present in time series. However, selecting the most convenient type of deep neural network and its parametrization is a complex task that requires considerable expertise. Therefore, there is a need for deeper studies on the suitability of all existing architectures for different forecasting tasks. In this work, we face two main challenges: a comprehensive review of the latest works using deep learning for time series forecasting and an experimental study comparing the performance of the most popular architectures. The comparison involves a thorough analysis of seven types of deep learning models in terms of accuracy and efficiency. We evaluate the rankings and distribution of results obtained with the proposed models under many different architecture configurations and training hyperparameters. The datasets used comprise more than 50,000 time series divided into 12 different forecasting problems. By training more than 38,000 models on these data, we provide the most extensive deep learning study for time series forecasting. Among all studied models, the results show that long short-term memory (LSTM) and convolutional networks (CNN) are the best alternatives, with LSTMs obtaining the most accurate forecasts. CNNs achieve comparable performance with less variability of results under different parameter configurations, while also being more efficient.


Subject(s)
Deep Learning , Forecasting , Machine Learning , Memory, Long-Term , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...