Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Mem Inst Oswaldo Cruz ; 119: e230182, 2024.
Article in English | MEDLINE | ID: mdl-38511814

ABSTRACT

BACKGROUND: Leishmaniases encompass a spectrum of neglected diseases caused by parasites of the genus Leishmania, grouped in two forms: tegumentary and visceral leishmaniasis. OBJECTIVES: In this study, we propose Friend Virus B NIH Jackson (FVB/NJ) mouse strain as a new experimental model of infection with Leishmania (Leishmania) amazonensis, the second most prevalent agent of tegumentary leishmaniasis in Brazil. METHODS AND FINDINGS: We performed in vitro infections of FVB/NJ macrophages and compared them with BALB/c macrophages, showing that BALB/c cells have higher infection percentages and a higher number of amastigotes/cell. Phagocytosis assays indicated that BALB/c and FVB/NJ macrophages have similar capacity to uptake parasites after 5 min incubations. We also investigated promastigotes' resistance to sera from FVB/NJ and BALB/c and observed no difference between the two sera, even though FVB/NJ has a deficiency in complement components. Finally, we subcutaneously infected FVB/NJ and BALB/c mice with 2 × 106 parasites expressing luciferase. Analysis of lesion development for 12 weeks showed that FVB/NJ and BALB/c mice have similar lesion profiles and parasite burdens. MAIN CONCLUSIONS: This work characterises for the first time the FVB/NJ mouse as a new model for tegumentary leishmaniasis caused by Leishmania (L.) amazonensis.


Subject(s)
Leishmania , Leishmaniasis, Cutaneous , Leishmaniasis, Visceral , Leishmaniasis , Mice , Animals , Leishmaniasis, Cutaneous/parasitology , Leishmaniasis, Visceral/parasitology , Disease Models, Animal , Macrophages , Mice, Inbred BALB C
2.
Mem. Inst. Oswaldo Cruz ; 119: e230182, 2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1550579

ABSTRACT

BACKGROUND Leishmaniases encompass a spectrum of neglected diseases caused by parasites of the genus Leishmania, grouped in two forms: tegumentary and visceral leishmaniasis. OBJECTIVES In this study, we propose Friend Virus B NIH Jackson (FVB/NJ) mouse strain as a new experimental model of infection with Leishmania (Leishmania) amazonensis, the second most prevalent agent of tegumentary leishmaniasis in Brazil. METHODS AND FINDINGS We performed in vitro infections of FVB/NJ macrophages and compared them with BALB/c macrophages, showing that BALB/c cells have higher infection percentages and a higher number of amastigotes/cell. Phagocytosis assays indicated that BALB/c and FVB/NJ macrophages have similar capacity to uptake parasites after 5 min incubations. We also investigated promastigotes' resistance to sera from FVB/NJ and BALB/c and observed no difference between the two sera, even though FVB/NJ has a deficiency in complement components. Finally, we subcutaneously infected FVB/NJ and BALB/c mice with 2 × 106 parasites expressing luciferase. Analysis of lesion development for 12 weeks showed that FVB/NJ and BALB/c mice have similar lesion profiles and parasite burdens. MAIN CONCLUSIONS This work characterises for the first time the FVB/NJ mouse as a new model for tegumentary leishmaniasis caused by Leishmania (L.) amazonensis.

3.
Parasitology ; 150(10): 922-933, 2023 09.
Article in English | MEDLINE | ID: mdl-37553284

ABSTRACT

Leishmaniases affect 12 million people worldwide. They are caused by Leishmania spp., protozoan parasites transmitted to mammals by female phlebotomine flies. During the life cycle, promastigote forms of the parasite live in the gut of infected sandflies and convert into amastigotes inside the vertebrate macrophages. The parasite evades macrophage's microbicidal responses due to virulence factors that affect parasite phagocytosis, survival and/or proliferation. The interaction between Leishmania and macrophage molecules is essential to phagocytosis and parasite survival. Proteins containing leucine-rich repeats (LRRs) are common in several organisms, and these motifs are usually involved in protein­protein interactions. We have identified the LRR17 gene, which encodes a protein with 6 LRR domains, in the genomes of several Leishmania species. We show here that promastigotes of Leishmania (L.) amazonensis overexpressing LaLRR17 are more infective in vitro. We produced recombinant LaLRR17 protein and identified macrophage 78 kDa glucose-regulated protein (GRP78) as a ligand for LaLRR17 employing affinity chromatography followed by mass spectrometry. We showed that GRP78 binds to LaLRR17 and that its blocking precludes the increase of infection conferred by LaLRR17. Our results are the first to report LRR17 gene and protein, and we hope they stimulate further studies on how this protein increases phagocytosis of Leishmania.


Subject(s)
Leishmania , Leishmaniasis , Parasites , Humans , Animals , Female , Mice , Leishmania/physiology , Endoplasmic Reticulum Chaperone BiP , Macrophages/parasitology , Mice, Inbred BALB C , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...