Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 11(17): 15881-15890, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30998315

ABSTRACT

We report on a combined chemical vapor deposition (CVD)/radio frequency (RF) sputtering synthetic strategy for the controlled surface modification of ZnO nanostructures by Ti-containing species. Specifically, the proposed approach consists in the CVD of grown-on-tip ZnO nanopyramids, followed by titanium RF sputtering under mild conditions. The results obtained by a thorough characterization demonstrate the successful ZnO surface functionalization with dispersed Ti-containing species in low amounts. This phenomenon, in turn, yields a remarkable enhancement of photoactivated superhydrophilic behavior, self-cleaning ability, and photocatalytic performances in comparison to bare ZnO. The reasons accounting for such an improvement are unravelled by a multitechnique analysis, elucidating the interplay between material chemico-physical properties and the corresponding functional behavior. Overall, the proposed strategy stands as an amenable tool for the mastering of semiconductor-based functional nanoarchitectures through ad hoc engineering of the system surface.

2.
Nanoscale ; 11(1): 98-108, 2018 Dec 20.
Article in English | MEDLINE | ID: mdl-30303201

ABSTRACT

Supported MnO2-based nanomaterials were fabricated on fluorine-doped tin oxide substrates using plasma enhanced-chemical vapor deposition (PE-CVD) between 100 °C and 400 °C, starting from a fluorinated Mn(ii) diamine diketonate precursor. Growth experiments yielded ß-MnO2 with a hierarchical morphology tuneable from dendritic structures to quasi-1D nanosystems as a function of growth temperature, whose variation also enabled a concomitant tailoring of the system fluorine content, and of the optical absorption and band gap. Preliminary photocatalytic tests were aimed at the investigation of photoinduced hydrophilic (PH) and solid phase photocatalytic (PC) performances of the present nanomaterials, as well as at the photodegradation of Plasmocorinth B azo-dye aqueous solutions. The obtained findings highlighted an attractive system photoactivity even under visible light, finely tailored by fluorine content, morphological organization and optical properties of the prepared nanostructures. The results indicate that the synthesized MnO2 nanosystems have potential applications as advanced smart materials for anti-fogging/self-cleaning end uses and water purification.

3.
Beilstein J Nanotechnol ; 9: 1629-1640, 2018.
Article in English | MEDLINE | ID: mdl-29977697

ABSTRACT

Titanium dioxide photocatalysts have received a lot of attention during the past decades due to their ability to degrade various organic pollutants to CO2 and H2O, which makes them suitable for use in environmental related fields such as air and water treatment and self-cleaning surfaces. In this work, titania thin films and powders were prepared by a particulate sol-gel route, using titanium tetrachloride (TiCl4) as a precursor. Afterwards, the prepared sols were doped with nitrogen (ammonium nitrate, urea), sulfur (thiourea) and platinum (chloroplatinic acid), coated onto glass substrates by dip-coating, and thermally treated in a muffle furnace to promote crystallization. The resulting thin films were then characterized by various techniques (i.e., TGA-DSC-MS, XRD, BET, XPS, SEM, band gap measurements). The photocatalytic activity of the prepared thin films was determined by measuring the degradation rate of plasmocorinth B (PB), an organic pigment used in the textile industry, which can pose an environmental risk when expelled into wastewater. A kinetic model for adsorption and subsequent degradation was used to fit the experimental data. The results have shown an increase in photocatalytic activity under visible-light illumination of nonmetal and metal doped and co-doped titania thin films compared to an undoped sample.

4.
Langmuir ; 34(15): 4568-4574, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29624397

ABSTRACT

Photoreforming promoted by metal oxide nanophotocatalysts is an attractive route for clean and sustainable hydrogen generation. In the present work, we propose for the first time the use of supported Mn3O4 nanosystems, both pure and functionalized with Au nanoparticles (NPs), for hydrogen generation by photoreforming. The target oxide systems, prepared by chemical vapor deposition (CVD) and decorated with gold NPs by radio frequency (RF) sputtering, were subjected to a thorough chemico-physical characterization and utilized for a proof-of-concept H2 generation in aqueous ethanolic solutions under simulated solar illumination. Pure Mn3O4 nanosystems yielded a constant hydrogen production rate of 10 mmol h-1 m-2 even for irradiation times up to 20 h. The introduction of Au NPs yielded a significant enhancement in photocatalytic activity, which decreased as a function of irradiation time. The main phenomena causing the Au-containing photocatalyst deactivation have been investigated by morphological and compositional analysis, providing important insights for the design of Mn3O4-based photocatalysts with improved performances.

5.
ACS Appl Mater Interfaces ; 10(15): 12305-12310, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29620350

ABSTRACT

The detection of poisonous chemicals and warfare agents, such as acetonitrile and dimethyl methylphosphonate, is of utmost importance for environmental/health protection and public security. In this regard, supported Mn3O4 nanosystems were fabricated by vapor deposition on Al2O3 substrates, and their structure/morphology were characterized as a function of the used growth atmosphere (dry vs. wet O2). Thanks to the high surface and peculiar nano-organization, the target systems displayed attractive functional properties, unprecedented for similar p-type systems, in the detection of the above chemical species. Their good responses, selectivity, and sensitivity pave the way to the fabrication of low-cost and secure sensors for different harmful analytes.

6.
Chemistry ; 23(71): 17954-17963, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29164705

ABSTRACT

Molecular engineering of manganese(II) diamine diketonate precursors is a key issue for their use in the vapor deposition of manganese oxide materials. Herein, two closely related ß-diketonate diamine MnII adducts with different fluorine contents in the diketonate ligands are examined. The target compounds were synthesized by a simple procedure and, for the first time, thoroughly characterized by a joint experimental-theoretical approach, to understand the influence of the ligand on their structures, electronic properties, thermal behavior, and reactivity. The target compounds are monomeric and exhibit a pseudo-octahedral coordination of the MnII centers, with differences in their structure and fragmentation processes related to the ligand nature. Both complexes can be readily vaporized without premature side decompositions, a favorable feature for their use as precursors for chemical vapor deposition (CVD) or atomic layer deposition applications. Preliminary CVD experiments at moderate growth temperatures enabled the fabrication of high-purity, single-phase Mn3 O4 nanosystems with tailored morphology, which hold great promise for various technological applications.

7.
Environ Sci Pollut Res Int ; 23(20): 20350-20359, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27449018

ABSTRACT

Supported Fe2O3/WO3 nanocomposites were fabricated by an original vapor phase approach, involving the chemical vapor deposition (CVD) of Fe2O3 on Ti sheets and the subsequent radio frequency (RF)-sputtering of WO3. Particular attention was dedicated to the control of the W/Fe ratio, in order to tailor the composition of the resulting materials. The target systems were analyzed by the joint use of complementary techniques, that is, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and optical absorption spectroscopy. The results showed the uniform decoration of α-Fe2O3 (hematite) globular particles by tiny WO3 aggregates, whose content could be controlled by modulations of the sole sputtering time. The photocatalytic degradation of phenol in the liquid phase was selected as a test reaction for a preliminary investigation of the system behavior in wastewater treatment applications. The system activity under both UV and Vis light illumination may open doors for further material optimization in view of real-world end-uses.


Subject(s)
Ferric Compounds/chemistry , Nanocomposites/chemistry , Oxides/chemistry , Phenol/chemistry , Polymers/chemical synthesis , Tungsten/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Polymers/chemistry , Ultraviolet Rays , X-Ray Diffraction
8.
Langmuir ; 31(25): 6988-94, 2015 Jun 30.
Article in English | MEDLINE | ID: mdl-26068136

ABSTRACT

The fabrication of silane-based fluorinated self-assembled monolayers (FSAMs) on indium tin oxide (ITO, a transparent electrode) was carried out making use of the following fluoroalkylsilanes (FAS): 2,2,3,3,4,4,5,5,6,6,6-undecafluoro-N-[3-(trimethoxysilyl)propyl]hexanamide (1; R(F) = C5F11) and 1,1,2,2,3,3,4,4,4-nonafluoro-N-[3-(trimethoxysilyl)propyl]butane-1-sulfonamide (2; R(F) = C4F9), containing an embedded amide and a sulfonamide group, respectively, between the short perfluoroalkyl chain (R(F) with C < 6) and the syloxanic moiety. The obtained FSAM-modified/ITO systems were characterized by X-ray photoelectron spectroscopy (XPS), contact angle (CA), surface energy measurements, and electrochemical impedance spectroscopy (EIS) and compared to ITO modified with a 3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyltriethoxysilane (3; R(F) = C6F13), with the perfluoroalkyl group linked to the syloxanic moiety through a simple hydrocarbon chain. The results obtained show that the presence of the -NHCO- and -NHSO2- groups have a different mode of action and, with the former, despite the short perfluoroalkyl chain, the ITO-1 system presents a CA (Θ(water )= 113.5°) and surface energy (γl = 14.0 mJ m(-2)) typical of amphiphobic materials. These properties can be exploited in a variety of applications, such as self-cleaning, anti-fouling, and anti-fingerprint coatings, and in advanced microelectronic components.

9.
ACS Appl Mater Interfaces ; 7(16): 8667-76, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25853179

ABSTRACT

Harvesting radiant energy to trigger water photoelectrolysis and produce clean hydrogen is receiving increasing attention in the search of alternative energy resources. In this regard, hematite (α-Fe2O3) nanostructures with controlled nano-organization have been fabricated and investigated for use as anodes in photoelectrochemical (PEC) cells. The target systems have been grown on conductive substrates by plasma enhanced-chemical vapor deposition (PE-CVD) and subjected to eventual ex situ annealing in air to further tailor their structure and properties. A detailed multitechnique approach has enabled to elucidate the interrelations between system characteristics and the generated photocurrent. The present α-Fe2O3 systems are characterized by a high purity and hierarchical morphologies consisting of nanopyramids/organized dendrites, offering a high contact area with the electrolyte. PEC data reveal a dramatic response enhancement upon thermal treatment, related to a more efficient electron transfer. The reasons underlying such a phenomenon are elucidated and discussed by transient absorption spectroscopy (TAS) studies of photogenerated charge carrier kinetics, investigated on different time scales for the first time on PE-CVD Fe2O3 nanostructures.

10.
J Nanosci Nanotechnol ; 13(7): 4962-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23901517

ABSTRACT

Supported fluorine-doped alpha-Fe2O3 nanomaterials were synthesized by Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) at temperatures between 300 and 500 degrees C, using a fluorinated iron(II) diketonate-diamine compound as a single-source precursor for both Fe and F. The system structure, morphology and composition were thoroughly investigated by various characterization techniques, highlighting the possibility of controlling the fluorine doping level by varying the sole growth temperature. Photocatalytic H2 production from water/ethanol solutions under simulated solar irradiation evidenced promising gas evolution rates, candidating the present PE-CVD approach as a valuable strategy to fabricate highly active supported materials.


Subject(s)
Fluorine/chemistry , Fluorine/radiation effects , Hydrogen/chemistry , Hydrogen/isolation & purification , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/radiation effects , Light , Materials Testing , Photochemistry/methods
11.
ACS Appl Mater Interfaces ; 5(15): 7130-8, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23806223

ABSTRACT

Nanostructured iron(III) oxide deposits are grown by chemical vapor deposition (CVD) at 400-500 °C on Si(100) substrates from Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine), yielding the selective formation of α-Fe2O3 or the scarcely studied ε-Fe2O3 polymorphs under suitably optimized preparative conditions. By using Ti(OPr(i))4 (OPr(i) = iso-propoxy) and water as atomic layer deposition (ALD) precursors, we subsequently functionalized the obtained materials at moderate temperatures (<300 °C) by an ultrathin titanomagnetite (Fe3-xTixO4) overlayer. An extensive multitechnique characterization, aimed at elucidating the system structure, morphology, composition and optical properties, evidenced that the photoactivated hydrophilic and photocatalytic behavior of the synthesized materials is dependent both on iron oxide phase composition and ALD surface modification. The proposed CVD/ALD hybrid synthetic approach candidates itself as a powerful tool for a variety of applications where semiconductor-based nanoarchitectures can benefit from the coupling with an ad hoc surface layer.

12.
Chemphyschem ; 13(17): 3798-801, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23097215

ABSTRACT

The other polymorph: A vapor-phase route for the fabrication of ß-Fe(2)O(3) nanomaterials on Ti substrates at 400-500 °C is reported. For the first time, the ß polymorph is tested as anode for lithium batteries, exhibiting promising performances in terms of Li storage and rate capability.


Subject(s)
Electric Power Supplies , Ferric Compounds/chemistry , Gases/chemistry , Lithium/chemistry , Nanostructures/chemistry , Electrodes , Ions/chemistry
13.
Dalton Trans ; 41(1): 149-55, 2012 Jan 07.
Article in English | MEDLINE | ID: mdl-22048471

ABSTRACT

Iron oxide is a key multi-functional material in many different fields of modern technology. The ß-Fe(2)O(3) cubic phase, one of the least studied Fe-O systems, was obtained by Chemical Vapor Deposition (CVD) using for the first time a Fe(II) ß-diketonate diamine complex, Fe(hfa)(2)·TMEDA, as the molecular source (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine). The strong visible light absorption of ß-Fe(2)O(3) deposits highlights their possible functional application in photocatalytic hydrogen production under solar light. A comprehensive investigation on the Fe(ii) complex, performed by a joint experimental-theoretical approach, explains the molecular origin of its excellent thermal behaviour and reveals why this species is a successful precursor for the CVD of iron oxide nanostructures.

14.
Langmuir ; 27(10): 6409-17, 2011 May 17.
Article in English | MEDLINE | ID: mdl-21517025

ABSTRACT

We report on the fabrication of Cu(x)O-TiO(2) (x = 1, 2) nanomaterials by an unprecedented vapor-phase approach. The adopted strategy involves the growth of porous Cu(x)O matrices by means of chemical vapor deposition (CVD), followed by the controlled dispersion of TiO(2) nanoparticles. The syntheses are performed on Si(100) substrates at temperatures of 400-550 °C under wet oxygen atmospheres, adopting Cu(hfa)(2)·TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N',N'-tetramethylethylenediamine) and Ti(O-(i)Pr)(2)(dpm)(2) (O-(i)Pr = isopropoxy; dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) as copper and titanium precursors, respectively. Subsequently, finely dispersed gold nanoparticles are introduced in the as-prepared systems via radio frequency (RF)-sputtering under mild conditions. The synthesis process results in the formation of systems with chemical composition and nano-organization strongly dependent on the nature of the initial Cu(x)O matrix and on the deposited TiO(2) amount. The decoration with low-size gold clusters paves the way to the engineering of hierarchically organized nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...