Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 926: 171699, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38508250

ABSTRACT

Floodbank realignment is a common practice aimed at restoring salt marsh vegetation on previously embanked land. However, experiences indicate that it may take several years before salt marsh vegetation becomes fully established. Various challenges arising from ecogeomorphic feedback mechanisms could pose significant setbacks to vegetation recolonization. The widespread adoption of transplantation techniques for the restoration and rehabilitation of rewilded landscapes has indeed proven to be a valuable tool for accelerating plant development. In the Ria Formosa coastal lagoon (South of Portugal), a pilot plan was implemented, and two salt marsh pioneer species, Spartina maritima (syn. Sporobolus maritimus) and Sarcocornia perennis (syn. Salicornia perennis), were transplanted from a natural salt marsh to a rewilded marsh. Biodegradable 3D porous structures were installed to mimic transplant clumping, aid sedimentation, and enhance the plant's initial adjustment. Ecological, sediment, and hydrodynamic data were collected during the 12-month pilot restoration plan. The environmental profiles of the donor and restoration sites were compared to substantiate the success of the transplants in the rewilded salt marsh. Results show that although plant shoot density decreased after the transplanting, Spartina maritima acclimated well to the new environmental conditions of the restoration site, showing signs of growth and cover increase, whilst Sarcocornia perennis was not able to acclimatize and survive in the restoration site. The failure behind the Sarcocornia perennis acclimation might be related to the bed properties and topographic properties of the restoration site in the rewilded marsh. Major findings contribute to a more comprehensive understanding of how salt marsh pioneering vegetation successfully colonizes disturbed habitats, facilitated using 3D-biodegradable structures.


Subject(s)
Chenopodiaceae , Wetlands , Geologic Sediments/chemistry , Ecosystem , Poaceae
2.
Sci Rep ; 13(1): 1921, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36732596

ABSTRACT

One of the key questions about wetlands resilience to sea-level rise is whether sediment supply will be enough to keep them coping with growing inundation levels. To address this question, researchers have put a lot of effort into field data collection and ecogeomorphic modelling, in an attempt to identify the tipping points of marsh survival. This study uses fieldwork data to characterize the sediment fluxes between the tidal flats and salt marshes, in the Ria Formosa lagoon (Portugal). Sediment fluxes were measured from the tidal channel towards the mid-upper marsh, during neap and spring tide conditions. The flow magnitude was measured, and induced transport was determined based on shear velocities. Deposition rates, instantaneous suspended sediment and near-bed velocities were linked through theoretical formulas and used to characterize time-averaged conditions for sediment delivery and deposition to the site. The results showed that suspended sediment concentrations and sediment deposition varied across the transect with no specific relation to elevation. Maximum water depths were recorded in the vegetated tidal flat, and the maximum currents were flood dominated, in the order of 0.20 m/s, in the low marsh due to flow-plant interactions and an increase of turbulence. Deposition rates ranged between 20 to 45 g/m2/hr, after a complete tidal cycle, and were higher in the mid-upper marsh. Hydroperiod was not the main contributor to sediment deposition in the study area. Sediment transport was tidally driven, strongly two-dimension during the cycle, and highly influenced by the vegetation. Measurements of marsh sediment flux obtained in our work are diverse from the ones found in the literature and evidence the importance of considering spatio-temporal variability of vegetated platforms in assessing overall marsh bed level changes.

3.
Sci Rep ; 9(1): 610, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679706

ABSTRACT

Coastal vegetated ecosystems are major organic carbon (OC) and total nitrogen (TN) sinks, but the mechanisms that regulate their spatial variability need to be better understood. Here we assessed how superficial sedimentary OC and TN within intertidal vegetated assemblages (saltmarsh and seagrass) vary along a flow gradient, which is a major driver of sediment grain size, and thus of organic matter (OM) content. A significant relationship between flow current velocity and OC and TN stocks in the seagrass was found, but not in the saltmarsh. OC and TN stocks of the saltmarsh were larger than the seagrass, even though that habitat experiences shorter hydroperiods. Mixing models revealed that OM sources also varied along the flow gradient within the seagrass, but not in the saltmarsh, showing increasing contributions of microphytobenthos (17-32%) and decreasing contributions of POM (45-35%). As well, OM sources varied vertically as microphytobenthos contribution was highest at the higher intertidal saltmarsh (48%), but not POM (39%). Macroalgae, seagrass and saltmarsh showed low contributions. Local trade-offs between flow current velocities, hydroperiod and structural complexity of vegetation must be considered, at both horizontal and vertical (elevation) spatial dimensions, for better estimates of blue carbon and nitrogen in coastal ecosystems.

SELECTION OF CITATIONS
SEARCH DETAIL
...