Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(14): 5644-5651, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36990656

ABSTRACT

In situ activation of Pt(IV) to Pt(II) species is a promising strategy to control the anticancer activity and overcome the off-target toxicity linked to classic platinum chemotherapeutic agents. Herein, we present the design and synthesis of two new asymmetric Pt(IV) derivatives of cisplatin and oxaliplatin (1·TARF and 2·TARF, respectively) bearing a covalently bonded 2',3',4',5'-tetraacetylriboflavin moiety (TARF). 1H and 195Pt NMR spectroscopy shows that 1·TARF and 2·TARF can be effectively activated into toxic Pt(II) species, when incubated with nicotinamide adenine dinucleotide, sodium ascorbate, and glutathione in the dark and under light irradiation. Density functional theory studies of the dark Pt(IV)-to-Pt(II) conversion of 2·TARF indicate that the process involves first hydride transfer from the donor to the flavin moiety of the complex, followed by electron transfer to the Pt(IV) center. When administered to MDA-MB-231 breast cancer cells preincubated with nontoxic amounts of ascorbate, 2·TARF displays enhanced toxicity (between 1 and 2 orders of magnitude), suggesting that the generation of oxaliplatin can selectively be triggered by redox activation. Such an effect is not observed when 2 and TARF are coadministered under the same conditions, demonstrating that covalent binding of the flavin to the Pt complex is pivotal.


Subject(s)
Antineoplastic Agents , Prodrugs , Oxaliplatin/pharmacology , Antineoplastic Agents/chemistry , Cisplatin/chemistry , Platinum/chemistry , Magnetic Resonance Spectroscopy , Prodrugs/chemistry , Cell Line, Tumor
2.
Inorg Chem ; 59(22): 16454-16466, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33103884

ABSTRACT

We present four new organometallic half-sandwich iridium(III) complexes of formula [Ir(η5:κ1-C5Me4CH2py)(N,N)](PF6)2, bearing a N,N-chelating ligand [ethylenediamine (en), 1; 1,3-diaminopropane (dap), 2; 2,2'-bipyridine (bipy), 3; 1,10-phenanthroline (phen), 4]; and a derivatized cyclopentadienyl ligand, C5Me4CH2C5H4N, which forms an additional five-membered chelate. The latter is hemilabile, and the Ir-N(py) bond can be reversibly cleaved by various stimuli. The four complexes are unreactive toward hydrolysis at pH 7. Interestingly, 1 and 2 react with hydrochloric acid and formate, and speciation between closed and open tether complexes can be followed by 1H NMR spectroscopy. Complex 1 binds to nucleobase guanine (9-ethylguanine, 9-EtG), yet interaction to calf-thymus DNA was not observed. New X-ray structures of closed tether complexes 1-4 and open tether complexes [Ir(η5-C5Me4CH2pyH)(en)Cl](PF6)2 (1·HCl) and [Ir(η5-C5Me4CH2py)(en)H]PF6 (1·hyd) have been determined. Hydride capture is efficient for 1 and 2. The kinetics of Ir-H bond formation and hydride transfer in a model organic molecule have been investigated, revealing a strong dependence on the temperature. Coincubation of complex 1 with nontoxic concentrations of sodium formate decreases the IC50 value in MCF7 breast cancer cells, indicating the possibility of intracellular activation of the Ir-N(py) tether bond to generate cytotoxic activity via iridium-mediated transfer hydrogenation.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Iridium/pharmacology , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Iridium/chemistry , MCF-7 Cells , Models, Molecular , Molecular Structure , Pyridines/chemistry
3.
J Med Chem ; 63(8): 4005-4021, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32207946

ABSTRACT

Six complexes of formula [Ir(η5:κ1-C5Me4CH2py)(C,N)]PF6, where C5Me4CH2py is 2-((2,3,4,5-tetramethylcyclopentadienyl)methyl)pyridine, and C,N is 2-phenylpyridine (1), 7,8-benzoquinoline (2), 1-phenylisoquinoline (3), 2-(p-tolyl)pyridine (4), 4-chloro-2-phenylquinoline (5), or 2-(2,4-difluorophenyl)pyridine (6), have been synthesized. The cyclopentadienyl ligand bears a tethered pyridine that binds to the metal center, resulting in an Ir(η5:κ1-C5Me4CH2pyN) tether-ring structure, as confirmed by the X-ray crystal structures of 1, 2, 4, 5, and 6. Nontether versions of 1 and 2 were synthesized to aid unambiguous correlation between structure and activity. While nontether complexes are highly potent toward MCF7 cancer cells (similar to cisplatin), complexes bearing the tether-ring structure, 1-6, are exceptionally more potent (1-2 orders of magnitude). Additionally, 1-6 disrupt mitochondrial membrane potential (ΔΨm) and induce oxidative stress. Internalization studies strongly correlate intracellular accumulation and anticancer activity in tether and nontether complexes. We present a new class of organo-iridium drug candidates bearing a structural feature that results in a leap in anticancer potency.


Subject(s)
Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Iridium/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/physiology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Crystallography, X-Ray/methods , Dose-Response Relationship, Drug , HCT116 Cells , Humans , Iridium/pharmacology , MCF-7 Cells , Reactive Oxygen Species/antagonists & inhibitors , Reactive Oxygen Species/metabolism
4.
Angew Chem Int Ed Engl ; 59(3): 1270-1278, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31697000

ABSTRACT

The iridium half-sandwich complex [Ir(η5 :κ1 -C5 Me4 CH2 py)(2-phenylpyridine)]PF6 is highly cytotoxic: 15-250× more potent than clinically used cisplatin in several cancer cell lines. We have developed a correlative 3D cryo X-ray imaging approach to specifically localize and quantify iridium within the whole hydrated cell at nanometer resolution. By means of cryo soft X-ray tomography (cryo-SXT), which provides the cellular ultrastructure at 50 nm resolution, and cryo hard X-ray fluorescence tomography (cryo-XRF), which provides the elemental sensitivity with a 70 nm step size, we have located the iridium anticancer agent exclusively in the mitochondria. Our methodology provides unique information on the intracellular fate of the metallodrug, without chemical fixation, labeling, or mechanical manipulation of the cells. This cryo-3D correlative imaging method can be applied to a number of biochemical processes for specific elemental localization within the native cellular landscape.


Subject(s)
Iridium/chemistry , Neoplasms/diagnostic imaging , Tomography, X-Ray/methods , Humans
5.
Org Lett ; 20(24): 7977-7981, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30516389

ABSTRACT

Imidazolidinone derivatives of a range of aromatic α-amino acids, on treatment with phosgene and potassium iodide, undergo a mild Bischler-Napieralski-style cyclocarbonylation reaction that generates a tricyclic lactam by insertion of a C═O group between amino acid nitrogen and the ortho position of the aryl substituent. Regio- and diastereoselective functionalization of the lactam generates a library of substituted dihydroisoquinolinones and their congeners in enantioenriched form.

SELECTION OF CITATIONS
SEARCH DETAIL
...