Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomedicine (Lond) ; 18(23): 1651-1668, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37929694

ABSTRACT

Background: Elevated expression of CAV1 in breast cancer increases tumor progression. Extracellular vesicles (EVs) from CAV1-expressing MDA-MB-231 breast cancer cells contain Tenascin C (TNC), but the relevance of TNC remained to be defined. Methods: EVs were characterized by nanotracking analysis, microscopy and western blotting. The uptake of EVs by cells was studied using flow cytometry. The effects of EVs on breast cancer cells were tested in migration, invasion, colony formation and in vivo assays. Results: EVs were taken up by cells; however, only those containing TNC promoted invasiveness. In vivo, EVs lacking TNC ceased to promote tumor growth. Conclusion: CAV1 and TNC contained in breast cancer cell-derived EVs were identified as proteins that favor progression of breast cancer.


Caveolin-1 (CAV1) is a protein that in breast cancer increases with disease progression. Extracellular vesicles (EVs) from breast cancer cells with CAV1 also contain Tenascin C (TNC) protein, but the importance of TNC remained to be defined. EVs were identified by size, microscopy and protein analysis. The effects of EVs on breast cancer cells were studied using cells and experiments in animals. CAV1 expression promotes TNC inclusion into EVs, which increased the aggressiveness of recipient breast cancer cells. In animals, only EVs with TNC increased features associated with cancer spread, while EVs lacking TNC reduced tumor growth.


Subject(s)
Breast Neoplasms , Caveolin 1 , Extracellular Vesicles , Tenascin , Humans , Cell Line, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caveolin 1/metabolism , Extracellular Vesicles/metabolism , Tenascin/metabolism , Animals , Mice , Mice, SCID , Disease Progression
2.
Sci Rep ; 11(1): 1342, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446666

ABSTRACT

Dendritic cells (DCs) promote T-cell mediated tolerance to self-antigens and induce inflammation to innocuous-antigens. This dual potential makes DCs fundamental players in inflammatory disorders. Evidence from inflammatory colitis mouse models and inflammatory bowel diseases (IBD) patients indicated that gut inflammation in IBD is driven mainly by T-helper-1 (Th1) and Th17 cells, suggesting an essential role for DCs in the development of IBD. Here we show that GSK-J4, a selective inhibitor of the histone demethylase JMJD3/UTX, attenuated inflammatory colitis by reducing the inflammatory potential and increasing the tolerogenic features of DCs. Mechanistic analyses revealed that GSK-J4 increased activating epigenetic signals while reducing repressive marks in the promoter of retinaldehyde dehydrogenase isoforms 1 and 3 in DCs, enhancing the production of retinoic acid. This, in turn, has an impact on regulatory T cells (Treg) increasing their lineage stability and gut tropism as well as potentiating their suppressive activity. Our results open new avenues for the treatment of IBD patients.


Subject(s)
Benzazepines/pharmacology , Colitis/immunology , Dendritic Cells/immunology , Inflammatory Bowel Diseases/immunology , Pyrimidines/pharmacology , Tretinoin/immunology , Aldehyde Dehydrogenase 1 Family/genetics , Aldehyde Dehydrogenase 1 Family/immunology , Animals , Colitis/drug therapy , Colitis/genetics , Colitis/pathology , Dendritic Cells/pathology , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Mice , Mice, Knockout , Retinal Dehydrogenase/genetics , Retinal Dehydrogenase/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th1 Cells/immunology , Th1 Cells/pathology , Th17 Cells/immunology , Th17 Cells/pathology
3.
J Autoimmun ; 75: 105-117, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27528513

ABSTRACT

As it has been established that demethylation of lysine 27 of histone H3 by the lysine-specific demethylase JMJD3 increases immune responses and thus elicits inflammation, we hypothesize that inhibition of JMJD3 may attenuate autoimmune disorders. We found that in vivo administration of GSK-J4, a selective inhibitor of JMJD3 and UTX, ameliorates the severity of experimental autoimmune encephalomyelitis (EAE). In vitro experiments revealed that the anti-inflammatory effect of GSK-J4 was exerted through an effect on dendritic cells (DCs), promoting a tolerogenic profile characterized by reduced expression of costimulatory molecules CD80/CD86, an increased expression of tolerogenic molecules CD103 and TGF-ß1, and reduced secretion of proinflammatory cytokines IL-6, IFN-γ, and TNF. Adoptive transfer of GSK-J4-treated DCs into EAE mice reduced the clinical manifestation of the disease and decreased the extent of inflammatory CD4+ T cells infiltrating the central nervous system. Notably, Treg generation, stability, and suppressive activity were all exacerbated by GSK-J4-treated DCs without affecting Th1 and Th17 cell production. Our data show that GSK-J4-mediated modulation of inflammation is achieved by a direct effect on DCs and that systemic treatment with GSK-J4 or adoptive transfer of GSK-J4-treated DCs ex vivo may be promising approaches for the treatment of inflammatory and autoimmune disorders.


Subject(s)
Benzazepines/pharmacology , Dendritic Cells/drug effects , Encephalomyelitis, Autoimmune, Experimental/prevention & control , Jumonji Domain-Containing Histone Demethylases/antagonists & inhibitors , Pyrimidines/pharmacology , Adoptive Transfer , Animals , Antigens, CD/immunology , Antigens, CD/metabolism , B7-1 Antigen/immunology , B7-1 Antigen/metabolism , B7-2 Antigen/immunology , B7-2 Antigen/metabolism , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Encephalomyelitis, Autoimmune, Experimental/genetics , Encephalomyelitis, Autoimmune, Experimental/immunology , Gene Expression/drug effects , Immune Tolerance/genetics , Immune Tolerance/immunology , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Integrin alpha Chains/immunology , Integrin alpha Chains/metabolism , Jumonji Domain-Containing Histone Demethylases/immunology , Jumonji Domain-Containing Histone Demethylases/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Reverse Transcriptase Polymerase Chain Reaction , Transforming Growth Factor beta1/immunology , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...