Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 4(12): e8331, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-20016820

ABSTRACT

Earth has experienced five major extinction events in the past 450 million years. Many scientists suggest we are now witnessing a sixth, driven by human impacts. However, it has been difficult to quantify the real extent of the current extinction episode, either for a given taxonomic group at the continental scale or for the worldwide biota, largely because comparisons of pre-anthropogenic and anthropogenic biodiversity baselines have been unavailable. Here, we compute those baselines for mammals of temperate North America, using a sampling-standardized rich fossil record to reconstruct species-area relationships for a series of time slices ranging from 30 million to 500 years ago. We show that shortly after humans first arrived in North America, mammalian diversity dropped to become at least 15%-42% too low compared to the "normal" diversity baseline that had existed for millions of years. While the Holocene reduction in North American mammal diversity has long been recognized qualitatively, our results provide a quantitative measure that clarifies how significant the diversity reduction actually was. If mass extinctions are defined as loss of at least 75% of species on a global scale, our data suggest that North American mammals had already progressed one-fifth to more than halfway (depending on biogeographic province) towards that benchmark, even before industrialized society began to affect them. Data currently are not available to make similar quantitative estimates for other continents, but qualitative declines in Holocene mammal diversity are also widely recognized in South America, Eurasia, and Australia. Extending our methodology to mammals in these areas, as well as to other taxa where possible, would provide a reasonable way to assess the magnitude of global extinction, the biodiversity impact of extinctions of currently threatened species, and the efficacy of conservation efforts into the future.


Subject(s)
Extinction, Biological , Mammals , Animals , Biodiversity , Geography , Humans , North America , Species Specificity , Time Factors
2.
PLoS Biol ; 3(8): e266, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16004509

ABSTRACT

Estimates of paleodiversity patterns through time have relied on datasets that lump taxonomic occurrences from geographic areas of varying size per interval of time. In essence, such estimates assume that the species-area effect, whereby more species are recorded from larger geographic areas, is negligible for fossil data. We tested this assumption by using the newly developed Miocene Mammal Mapping Project database of western North American fossil mammals and its associated analysis tools to empirically determine the geographic area that contributed to species diversity counts in successive temporal bins. The results indicate that a species-area effect markedly influences counts of fossil species, just as variable spatial sampling influences diversity counts on the modern landscape. Removing this bias suggests some traditionally recognized peaks in paleodiversity are just artifacts of the species-area effect while others stand out as meriting further attention. This discovery means that there is great potential for refining existing time-series estimates of paleodiversity, and for using species-area relationships to more reliably understand the magnitude and timing of such biotically important events as extinction, lineage diversification, and long-term trends in ecological structure.


Subject(s)
Biodiversity , Fossils , Geography , Animals , Geographic Information Systems , Mammals/classification , Paleontology/methods , Probability
SELECTION OF CITATIONS
SEARCH DETAIL
...