Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Phylogenet Evol ; 155: 106972, 2021 02.
Article in English | MEDLINE | ID: mdl-33035681

ABSTRACT

A central question in the evolution of life-histories is whether organisms reproduce once or repeatedly. For cephalopods, the main differences between semelparous and iteroparous are based on ovulation pattern and spawning type. The different reproductive strategies in coleoid cephalopods could be related to the habitat in which the species dwell (coastal vs. oceanic) and/or to environmental forces, thus, both aspects should be quantitatively evaluated under an evolutionary perspective to reconstruct: (a) the ancestral ovulation type of coleoid cephalopods, and (b) the potential of correlated evolution between ovulation type versus habitat and environment. Ancestral states of ovulation type were estimated using stochastic mapping based on literature data (i.e. synchronous or asynchronous), and this information was combined with a new molecular phylogeny including 165 species. The evolutionary correlation between ovulation type, habitat, and environment was estimated by means of the Markov model comparing the rates of gain and loss. The estimates of ancestral states of ovulation type for coleoid cephalopods resulted in a high probability that Octopodiformes evolved from synchronous ovulation type, and Decapodiformes from asynchronous ovulation type. The three traits evaluated presented phylogenetic signal, although no correlation was found between habitat and ovulation type. Overall, species in stable environments showed a tendency towards synchronous ovulation type, while the asynchronous ovulation pattern was found more frequently in species that live in unstable environments, being this last trait also responsible for triggering the change of ovulation type in some species throughout evolution.


Subject(s)
Cephalopoda/classification , Cephalopoda/physiology , Phylogeny , Animals , Ecosystem , Female , Models, Theoretical , Ovulation/physiology , Reproduction/physiology
2.
Sci Rep ; 9(1): 15934, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685909

ABSTRACT

Intertidal communities' composition and diversity usually exhibit strong changes in relation to environmental gradients at different biogeographical scales. This study represents the first comprehensive diversity and composition description of polyplacophoran assemblages along the Peruvian Province (SE Pacific, 12°S-39°S), as a model system for ecological latitudinal gradients. A total of 4,775 chitons from 21 species were collected on twelve localities along the Peruvian Province. This sampling allowed us to quantitatively estimate the relative abundance of the species in this assemblage, and to test whether chitons conform to elementary predictions of major biogeographic patterns such as a latitudinal diversity gradient. We found that the species composition supported the division of the province into three ecoregional faunal groups (i.e. Humboldtian, Central Chile, and Araucanian). Though chiton diversity did not follow a clear latitudinal gradient, changes in species composition were dominated by smaller scale variability in salinity and temperature. Body size significantly differed by ecoregions and species, indicating latitudinal size-structure assamblages. In some localities body size ratios differed from a random assemblage, evidencing competition at local scale. Changes in composition between ecoregions influence body size structure, and their overlapping produce vertical size segregation, suggesting that competition coupled with environmental conditions structure these assemblages.

3.
Front Physiol ; 10: 1238, 2019.
Article in English | MEDLINE | ID: mdl-31649551

ABSTRACT

Competition between same-sex organisms, or intra-sexual selection, can occur before and after mating, and include processes such as sperm competition and cryptic female choice. One of the consequences of intra-sexual selection is that male reproductive traits tend to evolve and diverge at high rates. In benthic octopuses, females often mate with more than one male in a single reproductive event, opening the venue for intra-sexual selection at multiple levels. For instance, males transfer spermatophores through hectocotylus, and can remove the spermatophores left by other males. Considering the limited evidence on post-copula competition in benthic octopuses, and the potential to affect the evolution of reproductive traits within octopodids, we put this hypothesis to a test employing a phylogenetic comparative approach. We combined data on hectocotylized arm length (HAL), ligula length (LL), spermatophore length (SL) with a Bayesian molecular phylogeny of 87 species, to analyze how reproductive traits have diverged across lineages and covary with body size (mantle length; ML). First, additionally to ML, we estimated the phylogenetic signal (λ) and mode of evolution (κ) in each reproductive trait. Second, we performed phylogenetic regressions to quantify the association among reproductive traits and their co-variation with ML. This analysis allowed us to estimate the phenotypic change along a branch into the phylogeny, and whether selection may have played a role in the evolution and diversification of specific clades. Estimations of λ were always high (>0.75), indicating concordance between the traits and the topology of the phylogenetic tree. Low values of κ (<1.0) suggested that evolution depends on branch lengths. All reproductive traits exhibiting a positive relation with ML (ß > 0.5 in all cases). Overall, evolutionary rate models applied to the SL-ML regression suggested that octopuses of the family Megaleledonidae have evolved larger spermatophores than expected for their size. The regression HAL-ML indicated that HAL was more variable in Megaleledonidae than in the remaining clades, suggesting that the high divergence across species within this group might partially reflect intra-sexual selection. These results support the hypothesis that, at least in some lineages, sexual selection may account for the divergence in reproductive traits of male octopuses.

4.
J Fish Biol ; 95(2): 613-623, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31119737

ABSTRACT

Embryonic development and larval morphology of Chromis crusma was described from five nests sampled between 21 and 25 m depth in central Chile (33°S). From each nest, a set of c. 100 randomly selected eggs were hand-collected and transported in seawater to the laboratory. Subsets of c. 30 eggs per nest were maintained in 50 ml glass containers at a constant ambient temperature of c. 12°C (range 11.5-12.9°C). Egg length (L) and width (W) and larval notochordal length (LN ) were measured from photographs. Geometric morphometric analyses were performed in newly hatched and 1 week old larvae to quantify shape changes. Ellipsoid eggs had an average (mean ± SE) size of 1.12 ± 0.05 mm L and 0.67 ± 0.02 mm W, with volume being similar throughout 15 developmental stages (i.e., ellipsoid-shaped; 0.27 mm3 ). Planktonic larvae hatched between 5 and 11 days at 12°C and had a mean LN of 3.13 ± 0.25 mm, a yolk sack volume of 0.03 mm3 and an oil droplet volume of 0.005 mm3 . Morphological traits at hatching included: (a) lack of paired fins and jaws; (b) single medial fin fold; (c) lack of eye pigmentation; (d) yolk sac present near anterior tip; (e) melanophores distributed along ventral surface with one pair over the forehead. In order to generate an up-to-date summary of developmental traits within Pomacentridae, we reviewed literature on egg development (e.g., shape and number of oil droplets), hatching and larval traits (e.g., morphology, pigmentation patterns). Thirty-two publications accounting for 35 species were selected, where eggs, embryonic development, hatching and larval traits were found for 26, 21, 24 and 34 species, respectively. In order to evaluate potential phylogenetic and environmental relationships within the early stages of Pomacentridae, cluster analyses (Bray Curtis similarity, group average) were also performed on egg and larval traits of 22 species divided by subfamily (Stegastinae, Chrominae, Abudefdufinae, Pomacentrinae) and thermal ranges (i.e., low: 16.5°C (range: 12-21°C), medium: 24.5°C (range:21-28°C) and high: 27°C (range: 26-28°C)), suggesting that early developmental patterns can be segregated by both temperature and phylogenetic relationships.


Subject(s)
Fishes/classification , Fishes/embryology , Animals , Chile , Embryo, Nonmammalian/anatomy & histology , Embryonic Development , Fishes/physiology , Larva/anatomy & histology , Larva/growth & development , Male , Multivariate Analysis , Phenotype , Phylogeny , Pigmentation , Species Specificity , Temperature
5.
Biol Bull ; 230(3): 188-96, 2016 06.
Article in English | MEDLINE | ID: mdl-27365414

ABSTRACT

The energetic input that offspring receive from their mothers is a well-studied maternal effect that can influence the evolution of life histories. Using the offspring of three sympatric whelks: Cominella virgata (one embryo per capsule); Cominella maculosa (multiple embryos per capsule); and Haustrum scobina (multiple embryos per capsule and nurse-embryo consumption), we examined how contrasting reproductive strategies mediate inter- and intraspecific differences in hatchling provisioning. Total lipid content (as measured in µg hatchling(-1) ± SE) was unrelated to size among the 3 species; the hatchlings of H. scobina were the smallest but had the highest lipid content (33.8 ± 8.1 µg hatchling(-1)). In offspring of C. maculosa, lipid content was 6.6 ± 0.4 µg hatchling(-1), and in offspring of C. virgata, it was 21.7 ± 3.2 µg hatchling(-1) The multi-encapsulated hatchlings of C. maculosa and H. scobina were the only species that contained the energetic lipids, wax ester (WE) and methyl ester (ME). However, the overall composition of energetic lipid between hatchlings of the two Cominella species reflected strong affinities of taxonomy, suggesting a phylogenetic evolution of the non-adelphophagic development strategy. Inter- and intracapsular variability in sibling provisioning was highest in H. scobina, a finding that implies less control of allocation to individual hatchlings in this adelphophagic developer. We suggest that interspecific variability of lipids offers a useful approach to understanding the evolution of maternal provisioning in direct-developing species.


Subject(s)
Gastropoda/physiology , Phylogeny , Animals , Embryo, Nonmammalian/chemistry , Gastropoda/classification , Gastropoda/embryology , Life Cycle Stages , Lipids/analysis , Reproduction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL