Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Orphanet J Rare Dis ; 16(1): 104, 2021 02 27.
Article in English | MEDLINE | ID: mdl-33639975

ABSTRACT

BACKGROUND: X-linked hypophosphatemia (XLH) is a hereditary rare disease caused by loss-of-function mutations in PHEX gene leading tohypophosphatemia and high renal loss of phosphate. Rickets and growth retardation are the major manifestations of XLH in children, but there is a broad phenotypic variability. Few publications have reported large series of patients. Current data on the clinical spectrum of the disease, the correlation with the underlying gene mutations, and the long-term outcome of patients on conventional treatment are needed, particularly because of the recent availability of new specific medications to treat XLH. RESULTS: The RenalTube database was used to retrospectively analyze 48 Spanish patients (15 men) from 39 different families, ranging from 3 months to 8 years and 2 months of age at the time of diagnosis (median age of 2.0 years), and with XLH confirmed by genetic analysis. Bone deformities, radiological signs of active rickets and growth retardation were the most common findings at diagnosis. Mean (± SEM) height was - 1.89 ± 0.19 SDS and 55% (22/40) of patients had height SDS below-2. All cases had hypophosphatemia, serum phosphate being - 2.81 ± 0.11 SDS. Clinical manifestations and severity of the disease were similar in both genders. No genotype-phenotype correlation was found. Conventional treatment did not attenuate growth retardation after a median follow up of 7.42 years (IQR = 11.26; n = 26 patients) and failed to normalize serum concentrations of phosphate. Eleven patients had mild hyperparathyroidism and 8 patients nephrocalcinosis. CONCLUSIONS: This study shows that growth retardation and rickets were the most prevalent clinical manifestations at diagnosis in a large series of Spanish pediatric patients with XLH confirmed by mutations in the PHEX gene. Traditional treatment with phosphate and vitamin D supplements did not improve height or corrected hypophosphatemia and was associated with a risk of hyperparathyroidism and nephrocalcinosis. The severity of the disease was similar in males and females.


Subject(s)
Familial Hypophosphatemic Rickets , Genetic Diseases, X-Linked , Hypophosphatemia , Child , Child, Preschool , Familial Hypophosphatemic Rickets/drug therapy , Familial Hypophosphatemic Rickets/genetics , Female , Humans , Male , Mutation/genetics , PHEX Phosphate Regulating Neutral Endopeptidase/genetics , Retrospective Studies
4.
Clin Chim Acta ; 481: 83-89, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29486147

ABSTRACT

BACKGROUND: Renal hypouricemia (RHUC), a rare inherited disorder characterized by impaired uric acid (UA) reabsorption in the proximal tubule, is caused by mutations in SLC22A12 or SLC2A9. Most mutations have been identified in Japanese patients, and only a few have been detected in Europeans. METHODS: We report clinical, biochemical and genetics findings of fourteen Spanish patients, six Caucasians and eight of Roma ethnia, diagnosed with idiopathic RHUC. Two of the patients presented exercise-induced acute renal failure and another one had several episodes of nephrolithiasis and four of them had progressive deterioration of renal function, while the rest were asymptomatic. RESULTS: Molecular analysis revealed SLC22A12 mutations in ten of the patients, and SLC2A9 mutations in the other four. A new heterozygous SLC22A12 missense mutation, c.1427C>A (p.A476D), was identified in two affected members of the same family. The rest of the patients presented homozygous, heterozygous or compound heterozygous mutations that have been previously identified in patients with RHUC; SLC22A12 p.T467M and p.L415_G417del, and SLC2A9 p.T125M. Expression studies in Xenopus oocytes revealed that c.1427C>A reduced UA transport but did not alter the location of URAT1 protein on the plasma membrane. CONCLUSIONS: The biochemical and clinical features of our patients together with the genetic analysis results confirmed the diagnosis of RHUC. This is the first report describing SLC22A12 and SLC2A9 mutations in Spanish patients.


Subject(s)
Glucose Transport Proteins, Facilitative/genetics , Mutation , Organic Anion Transporters/genetics , Organic Cation Transport Proteins/genetics , Renal Tubular Transport, Inborn Errors/genetics , Urinary Calculi/genetics , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Middle Aged , Pedigree , Spain , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...