Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 81(11): 2824-2832, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33762358

ABSTRACT

Clinical localization of primary tumors and sites of metastasis by PET is based on the enhanced cellular uptake of 2-deoxy-2-[18F]-fluoro-D-glucose (FDG). In prostate cancer, however, PET-FDG imaging has shown limited clinical applicability, suggesting that prostate cancer cells may utilize hexoses other than glucose, such as fructose, as the preferred energy source. Our previous studies suggested that prostate cancer cells overexpress fructose transporters, but not glucose transporters, compared with benign cells. Here, we focused on validating the functional expression of fructose transporters and determining whether fructose can modulate the biology of prostate cancer cells in vitro and in vivo. Fructose transporters, Glut5 and Glut9, were significantly upregulated in clinical specimens of prostate cancer when compared with their benign counterparts. Fructose levels in the serum of patients with prostate cancer were significantly higher than healthy subjects. Functional expression of fructose transporters was confirmed in prostate cancer cell lines. A detailed kinetic characterization indicated that Glut5 represents the main functional contributor in mediating fructose transport in prostate cancer cells. Fructose stimulated proliferation and invasion of prostate cancer cells in vitro. In addition, dietary fructose increased the growth of prostate cancer cell line-derived xenograft tumors and promoted prostate cancer cell proliferation in patient-derived xenografts. Gene set enrichment analysis confirmed that fructose stimulation enriched for proliferation-related pathways in prostate cancer cells. These results demonstrate that fructose promotes prostate cancer cell growth and aggressiveness in vitro and in vivo and may represent an alternative energy source for prostate cancer cells. SIGNIFICANCE: This study identifies increased expression of fructose transporters in prostate cancer and demonstrates a role for fructose as a key metabolic substrate supporting prostate cancer cells, revealing potential therapeutic targets and biomarkers.


Subject(s)
Biomarkers, Tumor/metabolism , Diet/adverse effects , Fructose/pharmacology , Gene Expression Regulation, Neoplastic , Glucose Transport Proteins, Facilitative/metabolism , Glucose Transporter Type 5/metabolism , Prostatic Neoplasms/pathology , Animals , Apoptosis , Biomarkers, Tumor/genetics , Cell Cycle , Cell Movement , Cell Proliferation , Glucose Transport Proteins, Facilitative/genetics , Glucose Transporter Type 5/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Prostatic Neoplasms/chemically induced , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Prostate Cancer Prostatic Dis ; 22(1): 49-58, 2019 03.
Article in English | MEDLINE | ID: mdl-30104655

ABSTRACT

Activation of glucose transporter-1 (Glut-1) gene expression is a molecular feature of cancer cells that increases glucose uptake and metabolism. Increased glucose uptake is the basis for the clinical localization of primary tumors using positron emission tomography (PET) and 2-deoxy-2-[18F]-fluoro-D-glucose (FDG) as a radiotracer. However, previous studies have demonstrated that a considerable number of cancers, which include prostate cancer (CaP), express low to undetectable levels of Glut-1 and that FDG-PET has limited clinical applicability in CaP. This observation could be explained by a low metabolic activity of CaP cells that may be overcome using different hexoses, such as fructose, as the preferred energy source. However, these hypotheses have not been examined critically in CaP. This review article summarizes what is currently known about transport and metabolism of hexoses, and more specifically fructose, in CaP and provides experimental evidences indicating that CaP cells may have increased capacity to transport and metabolize fructose in vitro and in vivo. Moreover, this review highlights recent findings that allow better understanding of how metabolism of fructose may regulate cancer cell proliferation and how fructose uptake and metabolism, through the de novo lipogenesis pathway, may provide new opportunities for CaP early diagnosis, staging, and treatment.


Subject(s)
Carbohydrate Metabolism , Fructose/metabolism , Prostatic Neoplasms/metabolism , Animals , Biological Transport , Biomarkers , Energy Metabolism , Gene Expression , Humans , Male , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy
3.
J Physiol ; 595(14): 4755-4767, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28422293

ABSTRACT

KEY POINTS: Extracellular ATP, in association with [Ca2+ ]i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. ABSTRACT: Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca2+ ]i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca2+ ]i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml-1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an antagonist used to block P2X7 receptors, which reduced basal CBF by 85%. Additionally, increasing extracellular ATP levels (0.1-100 µm) increased CBF, maintaining a sustained response that was suppressed in the presence of carbenoxolone. We also show that high levels of ATP (1 mm), associated with inflammatory conditions, lowered basal CBF by reducing [Ca2+ ]i and hemichannel functionality. In summary, we provide evidence indicating that airway epithelium ATP release is the molecular autocrine mechanism regulating basal ciliary activity and is also the mediator of the ciliary response to chemical stimulation.


Subject(s)
Adenosine Triphosphate/physiology , Cilia/physiology , Epithelial Cells/physiology , Respiratory Mucosa/physiology , Animals , Calcium/physiology , Cells, Cultured , Male , Mice, Inbred BALB C , Respiratory Mucosa/cytology , Trachea/physiology
4.
Angiogenesis ; 20(1): 25-38, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27679502

ABSTRACT

BACKGROUND: Sex-related differences in the role of androgen have been reported in cardiovascular diseases and angiogenesis. Moreover, androgen receptor (AR) has been causally involved in the homeostasis of human prostate endothelial cells. However, levels of expression, functionality and biological role of AR in male- and female-derived human endothelial cells (ECs) remain poorly characterized. The objectives of this work were (1) to characterize the functional expression of AR in male- and female-derived human umbilical vein endothelial cell (HUVEC), and (2) to specifically analyze the biological effects of DHT, and the role of AR on these effects, in male-derived HUVECs (mHUVECs). RESULTS: Immunohistochemical analyses of tissue microarrays from benign human tissues confirmed expression of AR in ECs from several androgen-regulated and non-androgen-regulated human organs. Functional expression of AR was validated in vitro in male- and female-derived HUVECs using quantitative RT-PCR, immunoblotting and AR-mediated transcriptional activity assays. Our results indicated that functional expression of AR in male- and female-derived HUVECs was heterogeneous, but not sex dependent. In parallel, we analyzed in depth the biological effects of DHT, and the role of AR on these effects, on proliferation, survival and tube formation capacity in mHUVECs. Our results indicated that DHT did not affect mHUVEC survival; however, DHT stimulated mHUVEC proliferation and suppressed mHUVEC tube formation capacity. While the effect of DHT on proliferation was mediated through AR, the effect of DHT on tube formation did not depend on the presence of a functional AR, but rather depended on the ability of mHUVECs to further metabolize DHT. CONCLUSIONS: (1) Heterogeneous expression of AR in male- and female-derived HUVEC could define the presence of functionally different subpopulations of ECs that may be affected differentially by androgens, which could explain, at least in part, the pleiotropic effects of androgen on vascular biology, and (2) DHT, and metabolites of DHT, generally thought to represent progressively more hydrophilic products along the path to elimination, may have differential roles in modulating the biology of human ECs through AR-dependent and AR-independent mechanisms, respectively.


Subject(s)
Androgens/pharmacology , Homeostasis/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, Androgen/metabolism , Androstanols/metabolism , Androsterone/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Dihydrotestosterone/chemistry , Dihydrotestosterone/pharmacology , Female , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Male , Models, Biological , Neovascularization, Physiologic/drug effects , Organ Specificity/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Androgen/genetics
5.
Reprod Fertil Dev ; 28(4): 434-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25123052

ABSTRACT

Prostaglandins (PGs) have been reported to be present in the seminal fluid and cervical mucus, affecting different stages of sperm maturation from spermatogenesis to the acrosome reaction. This study assessed the effects of low physiological PGE2 and PGF2α concentrations on human sperm motility and on the ability of the spermatozoa to bind to the zona pellucida (ZP). Human spermatozoa were isolated from seminal samples with normal concentration and motility parameters and incubated with 1µM PGE2, 1µM PGF2α or control solution to determine sperm motility and the ability to bind to human ZP. The effects of both PGs on intracellular calcium levels were determined. Incubation for 2 or 18h with PGE2 or PGF2α resulted in a significant (P<0.05) increase in the percentage of spermatozoa with progressive motility. In contrast with PGF2α, PGE2 alone induced an increase in sperm intracellular calcium levels; however, the percentage of sperm bound to the human ZP was doubled for both PGs. These results indicate that incubation of human spermatozoa with low physiological levels of PGE2 or PGF2α increases sperm functions and could improve conditions for assisted reproduction protocols.


Subject(s)
Dinoprost/pharmacology , Dinoprostone/pharmacology , Sperm Motility/drug effects , Sperm-Ovum Interactions/drug effects , Spermatozoa/drug effects , Calcium/metabolism , Humans , Male , Spermatozoa/metabolism , Time Factors
6.
J Endocrinol ; 224(3): R131-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25563353

ABSTRACT

Androgen receptor (AR) is a ligand-inducible transcription factor, and a member of the steroid-thyroid-retinoid receptor superfamily, that mediates the biological effects of androgens in a wide range of physiological and pathological processes. AR expression was identified in vascular cells nearly 20 years ago, and recent research has shown that AR mediates a variety of actions of androgens in endothelial and vascular smooth muscle cells. In this mini-review, we review evidence indicating the importance of AR in human endothelial cell (HUVEC) homeostatic and pathogenic processes. Although a role for AR in the modulation of HUVEC biology is evident, the molecular mechanisms by which AR regulates HUVEC homeostasis and disease processes are not fully understood. Understanding these mechanisms could provide critical insights into the processes of pathogenesis of diseases ranging from cardiovascular disease to cancer that are major causes of human morbidity and mortality.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Endothelial Progenitor Cells/physiology , Humans , Neoplasms/blood supply , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Neovascularization, Physiologic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...