Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Biol ; 21(10): e3002334, 2023 10.
Article in English | MEDLINE | ID: mdl-37856394

ABSTRACT

Tissue development entails genetically programmed differentiation of immature cell types to mature, fully differentiated cells. Exposure during development to non-mutagenic environmental factors can contribute to cancer risk, but the underlying mechanisms are not understood. We used a mouse model of endometrial adenocarcinoma that results from brief developmental exposure to an estrogenic chemical, diethylstilbestrol (DES), to determine causative factors. Single-cell RNA sequencing (scRNAseq) and spatial transcriptomics of adult control uteri revealed novel markers of uterine epithelial stem cells (EpSCs), identified distinct luminal and glandular progenitor cell (PC) populations, and defined glandular and luminal epithelium (LE) cell differentiation trajectories. Neonatal DES exposure disrupted uterine epithelial cell differentiation, resulting in a failure to generate an EpSC population or distinguishable glandular and luminal progenitors or mature cells. Instead, the DES-exposed epithelial cells were characterized by a single proliferating PC population and widespread activation of Wnt/ß-catenin signaling. The underlying endometrial stromal cells had dramatic increases in inflammatory signaling pathways and oxidative stress. Together, these changes activated phosphoinositide 3-kinase/AKT serine-threonine kinase signaling and malignant transformation of cells that were marked by phospho-AKT and the cancer-associated protein olfactomedin 4. Here, we defined a mechanistic pathway from developmental exposure to an endocrine disrupting chemical to the development of adult-onset cancer. These findings provide an explanation for how human cancers, which are often associated with abnormal activation of PI3K/AKT signaling, could result from exposure to environmental insults during development.


Subject(s)
Adenocarcinoma , Phosphatidylinositol 3-Kinases , Animals , Female , Mice , Adenocarcinoma/chemically induced , beta Catenin/genetics , beta Catenin/metabolism , Cell Differentiation , Estrogens , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Uterus
2.
Behav Processes ; 187: 104376, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33771607

ABSTRACT

In one experiment with rats, we examined whether positive affective states can serve as contexts in a between-subjects ABA renewal design using appetitive instrumental conditioning. Two groups of rats received training to press a lever for food where each acquisition session was preceded by administration of a tickling procedure (Context A) known to induce positive affective states. Then, lever pressing underwent extinction where rats received a pure handling treatment (Context B) before each session. During a final test session, we found stronger responding when the session was preceded by tickling (Group ABA) compared to handling (Group ABB), indicating an ABA renewal effect. Furthermore, test performance in Group ABB was not different from that in a third group where handling preceded acquisition sessions, and tickling extinction and test sessions (Group BAA), showing that tickling did not elevate instrumental responding during the test if it had been unrelated to initial acquisition. We discuss implications of our results for understanding the role of positive affective states in relapse of problem behavior.


Subject(s)
Conditioning, Operant , Extinction, Psychological , Animals , Food , Rats , Rats, Wistar , Recurrence
3.
PLoS One ; 9(7): e102905, 2014.
Article in English | MEDLINE | ID: mdl-25047078

ABSTRACT

Cattle ticks are distributed worldwide and affect animal health and livestock production. White tailed deer (WTD) sustain and spread cattle tick populations. The aim of this study was to model the efficacy of anti-tick vaccination of WTD to control tick infestations in the absence of cattle vaccination in a territory where both host species coexist and sustain cattle tick populations. Agent-based models that included land cover/landscape properties (patch size, distances to patches) and climatic conditions were built in a GIS environment to simulate WTD vaccine effectiveness under conditions where unvaccinated cattle shared the landscape. Published and validated information on tick life cycle was used to build models describing tick mortality and developmental rates. Data from simulations were applied to a large territory in northeastern Mexico where cattle ticks are endemic and WTD and cattle share substantial portions of the habitat. WTD movements were simulated together with tick population dynamics considering the actual landscape and climatic features. The size of the vegetation patches and the distance between patches were critical for the successful control of tick infestations after WTD vaccination. The presence of well-connected, large vegetation patches proved essential for tick control, since the tick could persist in areas of highly fragmented habitat. The continued application of one yearly vaccination on days 1-70 for three years reduced tick abundance/animal/patch by a factor of 40 and 60 for R. annulatus and R. microplus, respectively when compared to non-vaccinated controls. The study showed that vaccination of WTD alone during three consecutive years could result in the reduction of cattle tick populations in northeastern Mexico. Furthermore, the results of the simulations suggested the possibility of using vaccines to prevent the spread and thus the re-introduction of cattle ticks into tick-free areas.


Subject(s)
Cattle Diseases/prevention & control , Climate , Deer , Tick Control/methods , Tick Infestations/veterinary , Vaccination/veterinary , Animals , Cattle , Mexico , Models, Theoretical , Rhipicephalus , Tick Infestations/prevention & control
4.
Vaccine ; 30(2): 273-9, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22079077

ABSTRACT

Red deer (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) are hosts for different tick species and tick-borne pathogens and play a role in tick dispersal and maintenance in some regions. These factors stress the importance of controlling tick infestations in deer and several methods such as culling and acaricide treatment have been used. Tick vaccines are a cost-effective alternative for tick control that reduced cattle tick infestations and tick-borne pathogens prevalence while reducing the use of acaricides. Our hypothesis is that vaccination with vector protective antigens can be used for the control of tick infestations in deer. Herein, three experiments were conducted to characterize (1) the antibody response in red deer immunized with recombinant BM86, the antigen included in commercial tick vaccines, (2) the antibody response and control of cattle tick infestations in white-tailed deer immunized with recombinant BM86 or tick subolesin (SUB) and experimentally infested with Rhipicephalus (Boophilus) microplus, and (3) the antibody response and control of Hyalomma spp. and Rhipicephalus spp. field tick infestations in red deer immunized with mosquito akirin (AKR), the SUB ortholog and candidate protective antigen against different tick species and other ectoparasites. The results showed that deer produced an antibody response that correlated with the reduction in tick infestations and was similar to other hosts vaccinated previously with these antigens. The overall vaccine efficacy was similar between BM86 (E=76%) and SUB (E=83%) for the control of R. microplus infestations in white-tailed deer. The field trial in red deer showed a 25-33% (18-40% when only infested deer were considered) reduction in tick infestations, 14-20 weeks after the first immunization. These results demonstrated that vaccination with vector protective antigens could be used as an alternative method for the control of tick infestations in deer to reduce tick populations and dispersal in regions where deer are relevant hosts for these ectoparasites.


Subject(s)
Antigens/immunology , Arthropod Proteins/immunology , Insect Proteins/immunology , Ixodes/immunology , Membrane Glycoproteins/immunology , Recombinant Proteins/immunology , Tick Infestations/veterinary , Vaccination/methods , Vaccines/immunology , Animals , Antigens/administration & dosage , Arthropod Proteins/administration & dosage , Deer , Female , Insect Proteins/administration & dosage , Male , Membrane Glycoproteins/administration & dosage , Recombinant Proteins/administration & dosage , Tick Infestations/prevention & control , Vaccines/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...