Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Tissue Cell ; 82: 102050, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933273

ABSTRACT

Extracellular matrix (ECM) proteins in the mammary gland provide structure and regulate its development and homeostasis. Alterations in its structure can regulate and support pathogenesis, like breast tumors. Aiming to identify the health and tumoral canine mammary ECM scaffold protein profile by immunohistochemistry, the decellularization process was carried out to remove the cellular content. Additionally, it was verified the influence of health and tumoral ECM on the attachment of health and tumoral cells. The types I, III, IV, and V structural collagens were scarce in the mammary tumor, and ECM fibers were disorganized. Vimentin and CD44 were more common in mammary tumor stroma, suggesting a role in cell migration that results in tumor progression. Elastin, fibronectin, laminin, vitronectin, and osteopontin were similarly detected under healthy and tumor conditions, providing the attachment of normal cells in healthy ECM, while tumoral cells were able to attach in tumoral ECM. The protein pattern demonstrates ECM alteration in canine mammary tumorigenesis, presenting new knowledge on mammary tumor ECM microenvironment.


Subject(s)
Extracellular Matrix Proteins , Neoplasms , Animals , Dogs , Extracellular Matrix Proteins/metabolism , Extracellular Matrix/metabolism , Laminin , Connective Tissue , Neoplasms/pathology , Tumor Microenvironment
2.
Prog Lipid Res ; : 100995, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31445071

ABSTRACT

Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.

3.
Prog Lipid Res ; 75: 100988, 2019 07.
Article in English | MEDLINE | ID: mdl-31132366

ABSTRACT

Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.


Subject(s)
Sphingolipids/metabolism , Sphingosine/metabolism , Animals , Cell Membrane/metabolism , Humans , Molecular Structure , Sphingolipids/blood , Sphingolipids/chemistry , Sphingosine/blood , Sphingosine/chemistry
4.
Phys Chem Chem Phys ; 19(44): 30078-30088, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29098221

ABSTRACT

Nystatin (Nys) is a pore forming broad-spectrum and efficient antifungal drug with significant toxicity in mammalian organisms. In order to develop a non-toxic and more effective Nys formulation, its molecular mechanism of action at the cell membrane needs to be better understood. It is widely accepted that Nys activity and toxicity depend on the presence and type of membrane sterols. Taking advantage of multiple biophysical methodologies, we now show that the formation and stabilization of Nys aqueous pores, which are associated with Nys cytotoxicity, occur in the absence of membrane sterols. Our results suggest that the Nys mechanism of action is driven by the presence of highly ordered membrane domains capable of stabilizing the Nys oligomers. Moreover, Nys pore formation is accompanied by strong Nys-induced membrane reorganization that depends on membrane lipid composition and seems to underlie the Nys cytotoxic effect. Accordingly, in membranes enriched in a gel-phase forming phospholipid, Nys incorporates within the phospholipid-enriched gel domains, where it forms pores able to expand the gel domains. In contrast, in membranes enriched in gel domain forming sphingolipids, Nys-induced pore formation occurs through the destabilization of the gel phase. These results show that the Nys mechanism of action is complex and not only dependent on membrane sterols, and provide further insight into the molecular details governing Nys activity and toxicity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Nystatin/pharmacology , Biophysics , Cell Membrane/metabolism , Membrane Lipids/metabolism , Phospholipids/metabolism , Sterols
5.
J Dent Res ; 93(4): 335-45, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24389809

ABSTRACT

Bone morphogenetic proteins (BMPs) are members of the TGF-ß superfamily, acting as potent regulators during embryogenesis and bone and cartilage formation and repair. Cell and molecular biology approaches have unveiled the great complexity of BMP action, later confirmed by transgenic animal studies. Genetic engineering allows for the production of large amounts of BMPs for clinical use, but they have systematically been associated with a delivery system, such as type I collagen and calcium phosphate ceramics, to ensure controlled release and to maximize their biological activity at the surgical site, avoiding systemic diffusion. Clinical orthopedic studies have shown the benefits of FDA-approved recombinant human BMPs (rhBMPs) 2 and 7, but side effects, such as swelling, seroma, and increased cancer risk, have been reported, probably due to high BMP dosage. Several studies have supported the use of BMPs in periodontal regeneration, sinus lift bone-grafting, and non-unions in oral surgery. However, the clinical use of BMPs is growing mainly in off-label applications, with robust evidence to ascertain rhBMPs' safety and efficacy through well-designed, randomized, and double-blind clinical trials. Here we review and discuss the critical data on BMP structure, mechanisms of action, and possible clinical applications.


Subject(s)
Bone Morphogenetic Proteins/physiology , Bone Morphogenetic Protein 2/therapeutic use , Bone Morphogenetic Protein 7/therapeutic use , Bone Morphogenetic Proteins/therapeutic use , Bone Regeneration/drug effects , Chondrogenesis/drug effects , Drug Delivery Systems , Humans , Osteogenesis/drug effects , Recombinant Proteins/therapeutic use , Signal Transduction/physiology , Structure-Activity Relationship , Transforming Growth Factor beta/therapeutic use
6.
Cytometry A ; 81(12): 1084-91, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23090904

ABSTRACT

The recently emerged concept of cancer stem cell (CSC) has led to a new hypothesis on the basis for tumor progression. Basically, the CSC theory hypothesizes the presence of a hierarchically organized and relatively rare cell population, which is responsible for tumor initiation, self-renewal, and maintenance, in addition to accumulation of mutation and resistance to chemotherapy. CSCs have recently been described in breast cancer. Different genetic markers have been used to isolate breast CSCs, none of which have been correlated with the tumorigenicity or metastatic potential of the cells, limiting their precise characterization and clinical application in the development of therapeutic protocols. Here, we sought for subpopulations of CSCs by analyzing 10 judiciously chosen stem cell markers in a normal breast cell line (MCF10-A) and in four human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435, and Hs578-T) displaying different degrees of metastatic and invasiveness potential. We were able to identify two markers, which are differentially expressed in nontumorigenic versus tumor cells. The CD90 marker was highly expressed in the malignant cell lines. Interestingly, the CD14 molecule displayed higher expression levels in the nontumorigenic cell line. Therefore, we demonstrated that these two markers, which are more commonly used to isolate and characterize stem cells, are differentially expressed in breast tumor cells, when compared with nontumorigenic breast cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Lipopolysaccharide Receptors/analysis , Neoplastic Stem Cells/chemistry , Thy-1 Antigens/analysis , Biomarkers, Tumor/analysis , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Flow Cytometry , Humans , Lipopolysaccharide Receptors/genetics , MCF-7 Cells , Neoplasm Metastasis , Neoplastic Stem Cells/pathology , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Thy-1 Antigens/genetics
7.
Mol Biotechnol ; 39(2): 89-95, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18327551

ABSTRACT

Social and economical development is closely associated with technological innovation and a well-developed biotechnological industry. In the last few years, Brazil's scientific production has been steadily increasing; however, the number of patents is lagging behind, with technological and translational research requiring governmental incentive and reinforcement. The Cell and Molecular Therapy Center (NUCEL) was created to develop activities in the translational research field, addressing concrete problems found in biomedical and veterinary areas and actively searching for solutions by employing a genetic engineering approach to generate cell lines over-expressing recombinant proteins to be transferred to local biotech companies, aiming at furthering the development of a national competence for local production of biopharmaceuticals of widespread use and of life-saving importance. To this end, mammalian cell engineering technologies were used to generate cell lines over-expressing several different recombinant proteins of biomedical and biotechnological interest, namely, recombinant human Amylin/IAPP for diabetes treatment, human FVIII and FIX clotting factors for hemophilia, human and bovine FSH for fertility and reproduction, and human bone repair proteins (BMPs). Expression of some of these proteins is also being sought with the baculovirus/insect cell system (BEVS) which, in many cases, is able to deliver high-yield production of recombinant proteins with biological activity comparable to that of mammalian systems, but in a much more cost-effective manner. Transfer of some of these recombinant products to local Biotech companies has been pursued by taking advantage of the São Paulo State Foundation (FAPESP) and Federal Government (FINEP, CNPq) incentives for joint Research Development and Innovation partnership projects.


Subject(s)
Biopharmaceutics , Interdisciplinary Communication , Recombinant Proteins/biosynthesis , Technology Transfer , Amyloid/biosynthesis , Animals , Baculoviridae/metabolism , Biotechnology , Bone Morphogenetic Proteins/biosynthesis , Brazil , Cell Line , Factor IX/biosynthesis , Factor VIII/biosynthesis , Follicle Stimulating Hormone/biosynthesis , Genetic Engineering , Genetic Vectors/biosynthesis , Humans , Islet Amyloid Polypeptide , Research/economics , Research/organization & administration , Spodoptera/virology
8.
Braz. j. med. biol. res ; 40(10): 1323-1332, Oct. 2007. ilus
Article in English | LILACS | ID: lil-461368

ABSTRACT

The expression of sarcoplasmic reticulum SERCA1a Ca2+-ATPase wild-type and D351E mutants was optimized in yeast under the control of a galactose promoter. Fully active wild-type enzyme was recovered in yeast microsomal membrane fractions in sufficient amounts to permit a rapid and practical assay of ATP hydrolysis and phosphoenzyme formation from ATP or Pi. Mutant and wild-type Ca2+-ATPase were assayed for phosphorylation by Pi under conditions that are known to facilitate this reaction in the wild-type enzyme, including pH 6.0 or 7.0 at 25°C in the presence of dimethylsulfoxide. Although glutamyl (E) and aspartyl (D) residue side chains differ by only one methylene group, no phosphoenzyme could be detected in the D351E mutant, even upon the addition of 40 percent dimethylsulfoxide and 1 mM 32Pi in the presence of 10 mM EGTA and 5 mM MgCl2. These results show that in the D351E mutant, increasing hydrophobicity of the site with inorganic solvent was not a sufficient factor for the required abstraction of water in the reaction of E351 with Pi to form a glutamylphosphate (P-E351) phosphoenzyme moiety. Mutation D351E may disrupt the proposed alignment of the reactive water molecule with the aspartylphosphate (P-D351) moiety in the phosphorylation site, which may be an essential alignment both in the forward reaction (hydrolysis of aspartylphosphate) and in the reverse reaction (abstraction of water upon formation of an aspartylphosphate intermediate).


Subject(s)
Animals , Rabbits , Mutation/genetics , Phosphates/metabolism , Saccharomyces cerevisiae/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum/enzymology , Gene Expression Regulation, Fungal , Genetic Vectors , Phosphorylation , Saccharomyces cerevisiae/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
9.
Braz J Med Biol Res ; 40(10): 1323-32, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17713651

ABSTRACT

The expression of sarcoplasmic reticulum SERCA1a Ca2+-ATPase wild-type and D351E mutants was optimized in yeast under the control of a galactose promoter. Fully active wild-type enzyme was recovered in yeast microsomal membrane fractions in sufficient amounts to permit a rapid and practical assay of ATP hydrolysis and phosphoenzyme formation from ATP or Pi. Mutant and wild-type Ca2+-ATPase were assayed for phosphorylation by Pi under conditions that are known to facilitate this reaction in the wild-type enzyme, including pH 6.0 or 7.0 at 25 degrees C in the presence of dimethylsulfoxide. Although glutamyl (E) and aspartyl (D) residue side chains differ by only one methylene group, no phosphoenzyme could be detected in the D351E mutant, even upon the addition of 40% dimethylsulfoxide and 1 mM 32Pi in the presence of 10 mM EGTA and 5 mM MgCl2. These results show that in the D351E mutant, increasing hydrophobicity of the site with inorganic solvent was not a sufficient factor for the required abstraction of water in the reaction of E351 with Pi to form a glutamylphosphate (P-E351) phosphoenzyme moiety. Mutation D351E may disrupt the proposed alignment of the reactive water molecule with the aspartylphosphate (P-D351) moiety in the phosphorylation site, which may be an essential alignment both in the forward reaction (hydrolysis of aspartylphosphate) and in the reverse reaction (abstraction of water upon formation of an aspartylphosphate intermediate).


Subject(s)
Mutation/genetics , Phosphates/metabolism , Saccharomyces cerevisiae/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum/enzymology , Animals , Gene Expression Regulation, Fungal , Genetic Vectors , Phosphorylation , Rabbits , Saccharomyces cerevisiae/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...