Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 207(2): 368-76, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-19874855

ABSTRACT

In animals with active sensory systems, group size can have dramatic effects on the sensory information available to individuals. In "wave-type" weakly electric fishes there is a categorical difference in sensory processing between solitary fish and fish in groups: when conspecifics are within about 1m of each other, the electric fields mix and produce interference patterns that are detected by electroreceptors on each individual. Neural circuits in these animals must therefore process two streams of information-salient signals from prey items and predators and social signals from nearby conspecifics. We investigated the parameters of social signals in two genera of sympatric weakly electric fishes, Apteronotus and Sternopygus, in natural habitats of the Napo River valley in Ecuador and in laboratory settings. Apteronotus were most commonly found in pairs along the Napo River (47% of observations; maximum group size 4) and produced electrosensory interference at rates of 20-300 Hz. In contrast, Sternopygus were alone in 80% of observations (maximum group size 2) in the same region of Ecuador. Similar patterns were observed in laboratory experiments: Apteronotus were in groups and preferentially approached conspecific-like signals in an electrotaxis experiment whereas Sternopygus tended to be solitary and did not approach conspecific-like electrosensory signals. These results demonstrate categorical differences in social electrosensory-related activation of central nervous system circuits that may be related to the evolution of the jamming avoidance response that is used in Apteronotus but not Sternopygus to increase the frequency of electrosensory interference patterns.


Subject(s)
Electric Fish/physiology , Electromagnetic Phenomena , Gymnotiformes/physiology , Perception , Animals , Animals, Wild , Behavior, Animal , Ecuador , Female , Male , Sex Characteristics , Social Behavior , Species Specificity
2.
Behav Brain Res ; 164(1): 83-92, 2005 Oct 14.
Article in English | MEDLINE | ID: mdl-16099058

ABSTRACT

The detection and identification of behaviorally relevant signals in the presence of competing signals in the environment is a major challenge of animal sensory systems. In weakly electric fish such as Eigenmannia virescens, the interactions between the autogenous electric field and the electric fields of nearby conspecifics can have profound effects on the perception of other behaviorally relevant electrosensory information. To better understand the natural signals that the nervous system of Eigenmannia experiences during the processing of electrosensory information, we examined the electrosensory milieu of Eigenmannia in the wild and in the laboratory. Recordings of the electric fields of Eigenmannia were made in 'black' and 'white' waters near the Napo River in eastern Ecuador. Fourier analysis revealed that Eigenmannia typically experience the electric fields of three to five conspecifics during the day and night in each habitat. The median difference in electric organ discharge frequencies between nearby Eigenmannia during the day was 23 Hz in black water habitats, 41 Hz in white water, and 37 Hz at night in both habitats: these signals are known to activate tuberous electroreceptors and downstream CNS circuits. There was no correlation between the number of individual Eigenmannia detected at recording sites and electric organ discharge frequencies. Further, Eigenmannia apparently do not maximize the frequency differences between conspecifics. In laboratory studies fish were preferentially observed in aggregates of two fish or more. Aggregate sizes observed in the laboratory were similar to those in the wild.


Subject(s)
Animal Communication , Electric Organ/physiology , Gymnotiformes/physiology , Pattern Recognition, Physiological/physiology , Perceptual Masking/physiology , Social Environment , Animals , Electric Conductivity , Electrophysiology , Fresh Water/chemistry , Population Density , Sense Organs/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...