Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Bot ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869971

ABSTRACT

Optimising plant nitrogen (N) usage and inhibiting N leaching loss in the soil-crop system is crucial to maintaining crop yield and reducing environmental pollution. This study aimed at identifying quantitative trait loci (QTLs) and differentially expressed genes (DEGs) between two N treatments in order to list candidate genes related to nitrogen-related contrasting traits in tomato varieties. We characterised a genetic diversity core-collection (CC) and a multi-parental advanced generation intercross (MAGIC) tomato population grown in greenhouse under two nitrogen levels and assessed several N-related traits and mapped QTLs. Transcriptome response under the two N conditions was also investigated through RNA sequencing of fruit and leaves in four parents of the MAGIC population. Significant differences in response to N input reduction were observed at the phenotypic level for biomass and N-related traits. Twenty-seven (27) QTLs were detected for three target traits (Leaf N content, leaf Nitrogen Balance Index and petiole NO3- content), ten and six at low and high N condition, respectively; while 19 QTLs were identified for plasticity traits. At the transcriptome level, 4,752 and 2,405 DEGs were detected between the two N conditions in leaves and fruits, respectively, among which 3,628 (50.6%) in leaves and 1,717 (71.4%) in fruit were genotype specific. When considering all the genotypes, 1,677 DEGs were shared between organs or tissues. Finally, we integrated DEGs and QTLs analyses to identify the most promising candidate genes. The results highlighted a complex genetic architecture of N homeostasis in tomato and novel putative genes useful for breeding tomato varieties requiring less N input.

2.
J Hered ; 94(3): 243-50, 2003.
Article in English | MEDLINE | ID: mdl-12816965

ABSTRACT

The origin of Iberian cattle has been suggested by some authors to be the product of European and north African cattle entrances during the last few thousands of years. However, these hypotheses were mainly based on morphological similarities. This study analyzed 889 unrelated individuals from 15 representative Iberian breeds and 3 French breeds for 16 microsatellite loci. Statistical tests were used to calculate interpopulation genetic distances (D(A)) and principal components analysis (PCA). To visualize the geographical distribution of the genetic differentiation between Iberian cattle breeds, data from the PCA analysis were used to construct synthetic maps. Genetic similarity among neighboring Iberian breeds is mainly caused by gene flow. However, recent demographic fluctuations and reproductive isolation in Alistana, Mirandesa, and Tudanca has increased genetic drift, which may be the main cause for the relatively high differentiation of these populations. The synthetic maps constructed with the first and second PCs revealed (1) a large differentiation between Northern Iberian breeds rather than between more geographically distant breeds, and (2) a clear east-west gradient that may be related with the model of demic diffusion of agriculture. Finally, we detected no strong evidence for an African genetic influence in the Iberian cattle breeds analyzed in this study.


Subject(s)
Cattle/genetics , Genetic Variation , Microsatellite Repeats/genetics , Africa, Northern , Animals , Breeding , France , Portugal , Principal Component Analysis , Spain , Species Specificity
3.
Genet Sel Evol ; 33(3): 311-32, 2001.
Article in English | MEDLINE | ID: mdl-11403750

ABSTRACT

This study was undertaken to determine the genetic structure, evolutionary relationships, and the genetic diversity among 18 local cattle breeds from Spain, Portugal, and France using 16 microsatellites. Heterozygosities, estimates of Fst, genetic distances, multivariate and diversity analyses, and assignment tests were performed. Heterozygosities ranged from 0.54 in the Pirenaica breed to 0.72 in the Barrosã breed. Seven percent of the total genetic variability can be attributed to differences among breeds (mean F(st) = 0.07; P<0.01). Five different genetic distances were computed and compared with no correlation found to be significantly different from 0 between distances based on the effective size of the population and those which use the size of the alleles. The Weitzman recursive approach and a multivariate analysis were used to measure the contribution of the breeds diversity. The Weitzman approach suggests that the most important breeds to be preserved are those grouped into two clusters: the cluster formed by the Mirandesa and Alistana breeds and that of the Sayaguesa and Tudanca breeds. The hypothetical extinction of one of those clusters represents a 17% loss of diversity. A correspondence analysis not only distinguished four breed groups but also confirmed results of previous studies classifying the important breeds contributing to diversity. In addition, the variation between breeds was sufficiently high so as to allow individuals to be assigned to their breed of origin with a probability of 99% for simulated samples.


Subject(s)
Cattle/genetics , Genetic Variation , Phylogeny , Algorithms , Animals , Evolution, Molecular , Female , France , Gene Frequency , Genetic Linkage , Heterozygote , Likelihood Functions , Male , Microsatellite Repeats , Mutation , Oligonucleotide Array Sequence Analysis , Polymorphism, Genetic , Portugal , Quantitative Trait, Heritable , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...