Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Microbes Infect ; : 105375, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38849071

ABSTRACT

Neutrophils constitute the primary defense against bacterial infections, yet certain pathogens express virulence factors that enable them to subvert neutrophils-mediated killing. Outer membrane vesicles (OMVs) have emerged as a secretory system through which bacteria deliver virulence factors to host cells. OMVs from Bordetella pertussis, the etiological agent of whooping cough, are loaded with most of bacterial virulence factors, including CyaA, which plays a key role in B. pertussis evasion of neutrophils bactericidal activity. In our study, we investigated the role of B. pertussis OMVs in bacterial interaction with neutrophils. We observed that interaction of OMVs with neutrophils led to a decrease in the expression of cell surface CR3 and FcγRs, an effect dependent on the CyaA toxin delivered by these vesicles. This decreased receptor expression led to reduced bacterial uptake by neutrophils, irrespective of the presence of opsonic antibodies. Moreover, CyaA delivered by OMVs hindered intracellular bactericidal trafficking, promoting bacterial intracellular survival. When both bacteria and OMVs were opsonized, competition between opsonized OMVs and B. pertussis for FcγRs on neutrophils led to a significant decrease in bacterial uptake. Overall, our findings suggest that B. pertussis OMVs promote bacterial survival to the encounter with neutrophils in both naïve and immunized individuals.

2.
PLoS One ; 18(11): e0291331, 2023.
Article in English | MEDLINE | ID: mdl-38011105

ABSTRACT

B. parapertussis is one of the etiological agents of whooping cough. Once inhaled, the bacteria bind to the respiratory epithelium and start the infection. Little is known about this first step of host colonization and the role of the human airway epithelial barrier on B. parapertussis infection. We here investigated the outcome of the interaction of B. parapertussis with a polarized monolayer of respiratory epithelial cells. Our results show that B. parapertussis preferentially attaches to the intercellular boundaries, and causes the disruption of the tight junction integrity through the action of adenylate cyclase toxin (CyaA). We further found evidence indicating that this disruption enables the bacterial access to components of the basolateral membrane of epithelial cells to which B. parapertussis efficiently attaches and gains access to the intracellular location, where it can survive and eventually spread back into the extracellular environment. Altogether, these results suggest that the adenylate cyclase toxin enables B. parapertussis to overcome the epithelial barrier and eventually establish a niche of persistence within the respiratory epithelial cells.


Subject(s)
Bordetella parapertussis , Whooping Cough , Humans , Bordetella parapertussis/metabolism , Adenylate Cyclase Toxin/metabolism , Bordetella pertussis/metabolism , Intracellular Space/metabolism , Whooping Cough/microbiology , Epithelial Cells/metabolism
3.
Microb Pathog ; 174: 105898, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36460144

ABSTRACT

B. parapertussis is a whooping cough etiological agent, whose incidence in the population has increased remarkably. Virulence factors involved in the bacterial infection, however, remain poorly investigated. We here studied the role of adenylate cyclase (CyaA), the main toxin of B. parapertussis, in the outcome of the bacterial interaction with macrophages. Our results showed that B. parapertussis CyaA intoxicates human macrophages, prevents bacterial phagocytosis and precludes phago-lysosomal fusion eventually promoting the bacterial survival to the encounter with these immune cells. Accordingly, we found that B. parapertussis CyaA induces the transcriptional downregulation of host genes encoding for antimicrobial peptides, proteins involved in bacterial intracellular killing, and the pro-inflammatory cytokine TNF-α, while induces the upregulation of the anti-inflammatory cytokine IL-10. Together with previous reports suggesting a protective role of B. parapertussis CyaA against neutrophils bactericidal activity, the results of this study suggest a central role of CyaA in B. parapertussis immune evasion and persistence.


Subject(s)
Bordetella parapertussis , Whooping Cough , Humans , Adenylate Cyclase Toxin/genetics , Adenylate Cyclase Toxin/metabolism , Bordetella parapertussis/genetics , Bordetella pertussis/metabolism , Macrophages , Whooping Cough/prevention & control
4.
Microb Pathog ; 171: 105742, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049652

ABSTRACT

Inquilinus limosus is an emerging multi-resistant opportunistic pathogen documented mainly in cystic fibrosis patients. Infection with I. limosus is accompanied by either an acute respiratory exacerbation or a progressive loss of pulmonary function. This study examined the interaction of Inquilinus limosus with the bronquial human epithelial cell line 16HBE14o-. Almost 100% of the bacteria that attached to the bronquial cells were found internalized and located in acidic LAMP2 positive compartments. According to confocal studies combined with antibiotic protection assays, I. limosus is able to survive and eventually replicate in these compartments. I. limosus was found nontoxic to cells and did not induce neither IL-6 nor IL-8 cytokine production, a characteristic that may help the bacteria to evade host immune response. Overall, this study indicates that I. limosus displays pathogenic properties based on its ability to survive intracellularly in epithelial cells eventually leading to antibiotic failure and chronic infection.


Subject(s)
Interleukin-6 , Interleukin-8 , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Epithelial Cells , Humans , Lung , Rhodospirillaceae
5.
FEBS J ; 286(13): 2522-2535, 2019 07.
Article in English | MEDLINE | ID: mdl-30927485

ABSTRACT

Brucella spp. are pathogenic intracellular Gram-negative bacteria adapted to life within cells of several mammals, including humans. These bacteria are the causative agent of brucellosis, one of the zoonotic infections with the highest incidence in the world and for which a human vaccine is still unavailable. Current therapeutic treatments against brucellosis are based on the combination of two or more antibiotics for prolonged periods, which may lead to antibiotic resistance in the population. Riboflavin (vitamin B2) is biosynthesized by microorganisms and plants but mammals, including humans, must obtain it from dietary sources. Owing to the absence of the riboflavin biosynthetic enzymes in animals, this pathway is nowadays regarded as a rich resource of targets for the development of new antimicrobial agents. In this work, we describe a high-throughput screening approach to identify inhibitors of the enzymatic activity of riboflavin synthase, the last enzyme in this pathway. We also provide evidence for their subsequent validation as potential drug candidates in an in vitro brucellosis infection model. From an initial set of 44 000 highly diverse low molecular weight compounds with drug-like properties, we were able to identify ten molecules with 50% inhibitory concentrations in the low micromolar range. Further Brucella culture and intramacrophagic replication experiments showed that the most effective bactericidal compounds share a 2-Phenylamidazo[2,1-b][1,3]benzothiazole chemical scaffold. Altogether, these findings set up the basis for the subsequent lead optimization process and represent a promising advancement in the pursuit of novel and effective antimicrobial compounds against brucellosis.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Brucella abortus/drug effects , Enzyme Inhibitors/pharmacology , Riboflavin Synthase/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Bacterial Proteins/metabolism , Brucella abortus/enzymology , Cell Line , Enzyme Inhibitors/chemistry , High-Throughput Screening Assays/methods , Mice , Protein Binding , Riboflavin Synthase/metabolism , Small Molecule Libraries/chemistry
6.
PLoS One ; 13(4): e0194486, 2018.
Article in English | MEDLINE | ID: mdl-29634773

ABSTRACT

Many signaling pathways that control cellular development, cell-cycle progression and nutritional versatility have been studied in Caulobacter crescentus. For example, it was suggested that the response regulator NtrX is conditionally essential for this bacterium and that it might be necessary for responding to a signal produced in phosphate-replete minimal medium. However, such signal has not been identified yet and the role of NtrX in C. crescentus biology remains elusive. Here, using wild-type C. crescentus and a strain with a chromosomally myc-tagged ntrX gene, we demonstrate that high concentrations of phosphate (10 mM) regulate ntrX transcription and the abundance of the protein. We also show that the pH of the medium acts as a switch able to regulate the phosphorylation status of NtrX, promoting its phosphorylation under mildly acidic conditions and its dephosphorylation at neutral pH. Moreover, we demonstrate that the ntrX gene is required for survival in environments with low pH and under acidic stress. Finally, we prove that NtrX phosphorylation is also triggered by low pH in Brucella abortus, a pathogenic alphaproteobacterium. Overall, our work contributes to deepen the general knowledge of this system and provides tools to elucidate the NtrX regulon.


Subject(s)
Bacterial Proteins/physiology , Caulobacter crescentus/metabolism , Gene Expression Regulation, Bacterial , Bacterial Proteins/genetics , Brucella abortus/genetics , Brucella abortus/metabolism , Caulobacter crescentus/genetics , Gene Deletion , Hydrogen-Ion Concentration , Phosphates/chemistry , Phosphorylation , Promoter Regions, Genetic , Proteolysis , Regulon , Signal Transduction , Stress, Physiological , Temperature
7.
J Mol Biol ; 429(8): 1192-1212, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28088479

ABSTRACT

Bacteria sense and adapt to environmental changes using two-component systems. These signaling pathways are formed by a histidine kinase that phosphorylates a response regulator (RR), which finally modulates the transcription of target genes. The bacterium Brucella abortus codes for a two-component system formed by the histidine kinase NtrY and the RR NtrX that participates in sensing low oxygen tension and generating an adaptive response. NtrX is a modular protein with REC, AAA+, and DNA-binding domains, an architecture that classifies it among the NtrC subfamily of RRs. However, it lacks the signature GAFTGA motif that is essential for activating transcription by the mechanism proposed for canonical members of this subfamily. In this article, we present the first crystal structure of full-length NtrX, which is also the first structure of a full-length NtrC-like RR with all the domains solved, showing that the protein is structurally similar to other members of the subfamily. We also report that NtrX binds nucleotides and the structures of the protein bound to ATP and ADP. Despite binding ATP, NtrX does not have ATPase activity and does not form oligomers in response to phosphorylation or nucleotide binding. We also identify a nucleotide sequence recognized by NtrX that allows it to bind to a promoter region that regulates its own transcription and to establish a negative feedback mechanism to modulate its expression. Overall, this article provides a detailed description of the NtrX RR and supports that it functions by a mechanism different to classical NtrC-like RRs.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Brucella abortus/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/genetics , Codon , Crystallography, X-Ray , Feedback, Physiological , Promoter Regions, Genetic , Protein Conformation , Protein Multimerization , Transcription, Genetic
8.
J Mol Biol ; 427(20): 3258-3272, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26113057

ABSTRACT

Brucella abortus is an important pathogenic bacterium that has to overcome oxygen deficiency in order to achieve a successful infection. Previously, we proved that a two-component system formed by the histidine kinase NtrY and the response regulator NtrX is essential to achieve an adaptive response to low oxygen tension conditions. Even though the relevance of this signaling pathway has already been demonstrated in other microorganisms, its molecular activation mechanism has not yet been described in detail. In this article, we report the first crystal structures from different conformations of the NtrX receiver domain from B. abortus, and we propose a sequence of events to explain the structural rearrangements along the activation process. The analysis of the structures obtained in the presence of the phosphoryl group analog beryllofluoride led us to postulate that changes in the interface formed by the α4 helix and the ß5 strand are important for the activation, producing a reorientation of the α5 helix. Also, a biochemical characterization of the NtrX receiver domain enzymatic activities was performed, describing its autophosphorylation and autodephosphorylation kinetics. Finally, the role of H85, an important residue, was addressed by site-directed mutagenesis. Overall, these results provide significant structural basis for understanding the response regulator activation in this bacterial two-component system.


Subject(s)
Bacterial Proteins/ultrastructure , Brucella abortus/enzymology , Protein Kinases/ultrastructure , Brucella abortus/metabolism , Cell Hypoxia/physiology , Crystallography, X-Ray , Histidine Kinase , Oxygen/metabolism , Protein Structure, Tertiary , Signal Transduction
9.
Mol Microbiol ; 88(2): 222-33, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23527685

ABSTRACT

Brucella is the causative agent of the zoonotic disease brucellosis, which is endemic in many parts of the world. The success of Brucella as pathogen relies in its ability to adapt to the harsh environmental conditions found in mammalian hosts. One of its main adaptations is the induction of the expression of different genes involved in respiration at low oxygen tension. In this report we describe a regulatory network involved in this adaptation. We show that Brucella abortus PrrBA is a functional two-component signal transduction system that responds to the redox status and acts as a global regulator controlling the expression of the regulatory proteins NtrY, FnrN and NnrA, which are involved in the adaptation to survive at low oxygen tension. We also show that the two-component systems PrrBA and NtrYX co-ordinately regulate the expression of denitrification and high-affinity cytochrome oxidase genes. Strikingly, a double mutant strain in the prrB and ntrY genes is severely impaired in growth and virulence, while the ntrY and prrB single mutant strains are similar to wild-type B. abortus. The proposed regulatory network may contribute to understand the mechanisms used by Brucella for a successful adaptation to its replicative niche inside mammalian cells.


Subject(s)
Adaptation, Physiological/genetics , Bacterial Proteins/metabolism , Brucella abortus/physiology , Gene Expression Regulation, Bacterial , Oxygen/pharmacology , Protein Kinases/metabolism , Animals , Bacterial Proteins/genetics , Brucella abortus/drug effects , Brucella abortus/genetics , Brucella abortus/metabolism , Brucellosis/microbiology , Denitrification , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Histidine Kinase , Mice , Oxidation-Reduction , Oxygen Consumption/physiology , Protein Kinases/genetics , Signal Transduction
10.
Proc Natl Acad Sci U S A ; 109(30): 12135-40, 2012 Jul 24.
Article in English | MEDLINE | ID: mdl-22773814

ABSTRACT

Rhizobium leguminosarum is a soil bacterium that infects root hairs and induces the formation of nitrogen-fixing nodules on leguminous plants. Light, oxygen, and voltage (LOV)-domain proteins are blue-light receptors found in higher plants and many algae, fungi, and bacteria. The genome of R. leguminosarum bv. viciae 3841, a pea-nodulating endosymbiont, encodes a sensor histidine kinase containing a LOV domain at the N-terminal end (R-LOV-HK). R-LOV-HK has a typical LOV domain absorption spectrum with broad bands in the blue and UV-A regions and shows a truncated photocycle. Here we show that the R-LOV-HK protein regulates attachment to an abiotic surface and production of flagellar proteins and exopolysaccharide in response to light. Also, illumination of bacterial cultures before inoculation of pea roots increases the number of nodules per plant and the number of intranodular bacteroids. The effects of light on nodulation are dependent on a functional lov gene. The results presented in this work suggest that light, sensed by R-LOV-HK, is an important environmental factor that controls adaptive responses and the symbiotic efficiency of R. leguminosarum.


Subject(s)
Bacterial Adhesion/physiology , Light , Photoreceptors, Microbial/metabolism , Pisum sativum/microbiology , Plant Root Nodulation/physiology , Rhizobium leguminosarum/physiology , Symbiosis , Amino Acid Sequence , Bacterial Adhesion/radiation effects , Base Sequence , Biofilms/growth & development , Blotting, Western , Flagella/metabolism , Gentian Violet , Histidine Kinase , Microscopy, Electron, Scanning , Molecular Sequence Data , Plant Root Nodulation/radiation effects , Polysaccharides, Bacterial/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Structure, Tertiary/genetics , Real-Time Polymerase Chain Reaction , Rhizobium leguminosarum/radiation effects , Rhizobium leguminosarum/ultrastructure , Sequence Alignment , Sequence Analysis, DNA , Statistics, Nonparametric
11.
Mol Microbiol ; 85(1): 39-50, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22582926

ABSTRACT

Brucella spp. are facultative intracellular bacteria pathogenic for many mammalian species including humans, causing a disease called brucellosis. Learning how Brucella adapts to its intracellular niche is crucial for understanding its pathogenesis mechanism, allowing for the development of new and more effective vaccines and treatments against brucellosis. Brucella pathogenesis resides mostly in its ability to adapt to the harsh environmental conditions encountered during host infection such as the oxygen depletion. The mechanism by which Brucella senses the oxygen tension and triggers its environmental adaptation is unknown. In this work we show that the Brucella abortus NtrY/NtrX two-component system is involved in oxygen sensing through a haem group contained in a Per-ARNT-SIM (PAS) domain of the NtrY histidine kinase. The NtrY haem iron can be reduced to the ferrous form and is rapidly oxidized to the ferric form in presence of oxygen. Importantly, we show that the oxidation state of the haem iron modulates the autokinase activity, being the anoxygenic reduced ferrous form the signalling state of NtrY. Also, we show that ntrY gene expression increases under low oxygen tension and that NtrY transfers its signal to its cognate response regulator NtrX, regulating in this way the expression of nitrogen respiration enzymes. Based on these findings, we postulate that NtrY acts as a redox sensor in Brucella spp.


Subject(s)
Brucella abortus/genetics , Nitrogen/metabolism , Oxygen/metabolism , Protein Kinases/metabolism , Adaptation, Physiological , Animals , Brucella abortus/enzymology , Cell Line , Denitrification , Gene Expression Regulation, Bacterial , Heme/metabolism , Histidine Kinase , Mice , Operon , Oxidation-Reduction , Phosphorylation , Promoter Regions, Genetic , Protein Kinases/genetics , Signal Transduction
12.
Biochemistry ; 47(31): 8165-75, 2008 Aug 05.
Article in English | MEDLINE | ID: mdl-18616282

ABSTRACT

The bacterial genus Brucella consists of a group of facultative intracellular pathogens which produces abortion and infertility in animals and a chronic debilitating febrile illness in humans. BMFP is a basic protein of Brucella abortus that belongs to a highly conserved group of homologue proteins of unknown structure and function in proteobacteria (COG2960). In this study, we report the structural and biochemical characterization of this protein. We found that BMFP has two structural domains: a carboxyl-terminal coiled-coil domain through which the protein self-associates as a trimer and a natively disordered amino-terminal domain which has propensity to adopt an amphipathic alpha-helical structure. This natively unfolded domain undergoes a structural rearrangement from unfolded to alpha-helix in the presence of high ionic strength, acidic pH, detergents, and phospholipid vesicles. Moreover, we demonstrated that the interaction of BMFP with phospholipid vesicles promotes in vitro membrane fusion. These results contribute to the elucidation of the structural and functional properties of this protein and its homologues present in most proteobacteria.


Subject(s)
Bacterial Proteins/metabolism , Brucella abortus/metabolism , Membrane Lipids/metabolism , Phospholipids/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Brucella abortus/genetics , Circular Dichroism , Dimerization , Liposomes/chemistry , Membrane Fusion , Membrane Lipids/chemistry , Models, Biological , Molecular Sequence Data , Molecular Weight , Phospholipids/chemistry , Polymerase Chain Reaction , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...