Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38611389

ABSTRACT

Per- and polyfluorinated alkyl substances (PFASs) are a group of anthropogenic chemicals used in a range of industrial processes and consumer products. Recently, their ubiquitous presence in the environment as well as their toxicological effects in humans have gained relevant attention. Although the occurrence of PFASs is widely investigated in scientific community, the standardization of analytical method for all matrices still remains an important issue. In this review, we discussed extraction and detection methods in depth to evaluate the best procedures of PFAS identification in terms of analytical parameters (e.g., limits of detection (LODs), limits of quantification (LOQs), recoveries). Extraction approaches based on liquid-liquid extraction (LLE), alkaline digestion, and solid phase extraction (SPE), followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis are the main analytical methods applied in the literature. The results showed detectable recoveries of PFOA and PFOS in meat, milk, vegetables, eggs products (90.6-101.2% and of 89.2-98.4%), and fish (96-108%). Furthermore, the low LOD and LOQ values obtained for meat (0.00592-0.01907 ng g-1; 0.050 ng g-1), milk (0.003-0.009 ng g-1; 0.010-0.027 ng g-1), fruit (0.002-0.009 ng g-1; 0.006-0.024 ng g-1), and fish (0.00369-0.017.33 ng g-1; 0.05 ng g-1) also confirmed the effectiveness of the recent quick, easy, cheap, effective, rugged, and safe method (QuEChERS) for simple, speedy, and sensitive ultra-trace PFAS analysis.

2.
Foods ; 12(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959034

ABSTRACT

In recent years, human populations' exposure to microplastics via foods is becoming a topic of concern. Although microplastics have been defined as "emerging contaminants", their occurrence in the environment and food is quite dated. This systematic review aims to investigate the discrepancies which are characterizing the research in the microplastics field in foods, with particular regard to sample preparations, microplastics' concentrations and their effect on humans. For the selection of papers, the PRISMA methodology was followed. Discrepancies in the methodological approaches emerged and in the expression of the results as well, underlying the urgency in the harmonization of the methodological approaches. Uncertainties are still present regarding the adverse effects of microplastics on the human body. The scientific evidence obtained thus far is, in fact, not sufficient to demonstrate a concrete negative effect. This review has clearly underlined the need to standardise laboratory approaches to obtain useful results for better food safety management.

3.
Foods ; 11(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35564074

ABSTRACT

Formaldehyde, the simplest molecule of the aldehyde group, is a gaseous compound at room temperature and pressure, is colorless, and has a strong, pungent odor. It is soluble in water, ethanol, and diethyl ether and is used in solution or polymerized form. Its maximum daily dosage established by the EPA is 0.2 µg g-1 of body weight whereas that established by the WHO is between 1.5 and 14 mg g-1: it is in category 1A of carcinogens by IARC. From an analytical point of view, formaldehyde is traditionally analyzed by HPLC with UV-Vis detection. Nowadays, the need to analyze this compound quickly and in situ is increasing. This work proposes a critical review of methods for analyzing formaldehyde in food using sensing methods. A search carried out on the Scopus database documented more than 50 papers published in the last 5 years. The increase in interest in the recognition of the presence of formaldehyde in food has occurred in recent years, above all due to an awareness of the damage it can cause to human health. This paper focuses on some new sensors by analyzing their performance and comparing them with various no-sensing methods but focusing on the determination of formaldehyde in food products. The sensors reported are of various types, but they all share a good LOD, good accuracy, and a reduced analysis time. Some of them are also biodegradable and others have a very low cost, many are portable and easy to use, therefore usable for the recognition of food adulterations on site.

SELECTION OF CITATIONS
SEARCH DETAIL
...