Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36560279

ABSTRACT

For the commercial sector, warehouses are becoming increasingly vital. Constant efforts are in progress to increase the efficiency of these facilities while reducing costs. The inventory part of the goods is a time-consuming task that impacts the company's revenue. This article presents an analysis of the performance of a state-of-the-art, visual-inertial odometry algorithm, SVO Pro Open, when varying the resolution and frequency of video streaming in an industrial environment. To perform efficiently this task, achieving an optimal system in terms of localization accuracy, robustness, and computational cost is necessary. Different resolutions are selected with a constant aspect ratio, and an accurate calibration for each resolution configuration is performed. A stable operating point in terms of robustness, accuracy of localization, and CPU utilization is found and the trends obtained are studied. To keep the system robust against sudden divergence, the feature loss factor extracted from optical sensors is analyzed. Innovative trends and translation errors on the order of a few tens of centimeters are achieved, allowing the system to navigate safely in the warehouse. The best result is obtained at a resolution of 636 × 600 px, where the localization errors (x, y, and z) are all under 0.25 m. In addition, the CPU (Central Processing Unit) usage of the onboard computer is kept below 60%, remaining usable for other relevant onboard processing tasks.


Subject(s)
Pentaerythritol Tetranitrate , Records , Algorithms , Calibration , Environment
2.
Sensors (Basel) ; 22(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35890800

ABSTRACT

One of the most relevant problems related to Unmanned Aerial Vehicle's (UAV) autonomous navigation for industrial inspection is localization or pose estimation relative to significant elements of the environment. This paper analyzes two different approaches in this regard, focusing on its application to unstructured scenarios where objects of considerable size are present, such as a truck, a wind tower, an airplane, a building, etc. The presented methods require a previously developed Computer-Aided Design (CAD) model of the main object to be inspected. The first approach is based on an occupancy map built from a horizontal projection of this CAD model and the Adaptive Monte Carlo Localization (AMCL) algorithm to reach convergence by considering the likelihood field observation model between the 2D projection of 3D sensor data and the created map. The second approach uses a point cloud prior map of the 3D CAD model and a scan-matching algorithm based on the Iterative Closest Point Algorithm (ICP) and the Unscented Kalman Filter (UKF). The presented approaches have been extensively evaluated using simulated as well as previously recorded real flight data. We focus on aircraft inspection as a test example, but our results and conclusions can be directly extended to other applications. To support this assertion, a truck inspection has been performed. Our tests reflected that creating a 2D or 3D map from a standard CAD model and using a 3D laser scan on the created maps can optimize the processing time, resources and improve robustness. The techniques used to segment unexpected objects in 2D maps improved the performance of AMCL. In addition, we showed that moving around locations with relevant geometry after take-off when running AMCL enabled faster convergence and high accuracy. Hence, it could be used as an initial position estimation method for other localization algorithms. The ICP-NL method works well in environments with elements other than the object to inspect, but it can provide better results if some techniques to segment the new objects are applied. Furthermore, the proposed ICP-NL scan-matching method together with UKF performed faster, in a more robust manner, than NDT. Moreover, it is not affected by flight height. However, ICP-NL error may still be too high for applications requiring increased accuracy.

3.
Sensors (Basel) ; 15(11): 29569-93, 2015 Nov 24.
Article in English | MEDLINE | ID: mdl-26610513

ABSTRACT

Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results.


Subject(s)
Illicit Drugs/analysis , Image Processing, Computer-Assisted/methods , Saliva/chemistry , Smartphone , Substance Abuse Detection/methods , Colorimetry/methods , Equipment Design , Humans , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...