Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Evolution ; 77(12): 2533-2546, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-37671423

ABSTRACT

Divergent natural selection should lead to adaptive radiation-that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of "adaptive landscapes," yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin's ground finches (Geospiza spp.) at an intensively studied site on Santa Cruz (Galápagos) to estimate individual apparent lifespan in relation to beak traits. We use these estimates to model a multi-species fitness landscape, which we also convert to a formal adaptive landscape. We then assess the correspondence between estimated fitness peaks and observed phenotypes for each of five phenotypic modes (G. fuliginosa, G. fortis [small and large morphotypes], G. magnirostris, and G. scandens). The fitness and adaptive landscapes show 5 and 4 peaks, respectively, and, as expected, the adaptive landscape was smoother than the fitness landscape. Each of the five phenotypic modes appeared reasonably close to the corresponding fitness peak, yet interesting deviations were also documented and examined. By estimating adaptive landscapes in an ongoing adaptive radiation, our study demonstrates their utility as a quantitative tool for exploring and predicting adaptive radiation.


Subject(s)
Finches , Passeriformes , Animals , Finches/genetics , Selection, Genetic , Phenotype , Ecuador , Beak
2.
Ecol Evol ; 12(10): e9399, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36225827

ABSTRACT

The term terroir is used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e., the effect of space or "site") is expected to play an important role in shaping phenotypic traits. Just how important is the pure spatial effect of terroir (e.g., differences between sites that persist across years) in comparison to temporal variation (e.g., differences between years that persist across sites), and the interaction between space and time (e.g., differences between sites change across years)? We answer this question by analyzing beak and body traits of 4388 medium ground finches (Geospiza fortis) collected across 10 years at three locations in Galápagos. Analyses of variance indicated that phenotypic variation was mostly explained by site for beak size (η 2 = 0.42) and body size (η 2 = 0.43), with a smaller contribution for beak shape (η 2 = 0.05) and body shape (η 2 = 0.12), but still higher compared to year and site-by-year effects. As such, the effect of terroir seems to be very strong in Darwin's finches, notwithstanding the oft-emphasized interannual variation. However, these results changed dramatically when we excluded data from Daphne Major, indicating that the strong effect of terroir was mostly driven by that particular population. These phenotypic results were largely paralleled in analyses of environmental variables (rainfall and vegetation indices) expected to shape terroir in this system. These findings affirm the evolutionary importance of terroir, while also revealing its dependence on other factors, such as geographical isolation.

3.
ACS Appl Nano Mater ; 4(1): 211-219, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-34142014

ABSTRACT

Onion-like carbon nanoparticles were synthesized from diamond nanoparticles to be used as the precursor for graphene oxide quantum dots. Onion-like carbon nanoparticles were exfoliated to produce two types of nanoparticles, graphene oxide quantum dots that showed size-dependent fluorescence and highly stable inner cores. Multicolor fluorescent quantum dots were obtained and characterized using different techniques. Polyacrylamide gel electrophoresis showed a range of emission wavelengths spanning from red to blue with the highest intensity shown by green fluorescence. Using high-resolution transmission electron microscopy, we calculated a unit cell size of 2.47 Å in a highly oxidized and defected structure of graphene oxide. A diameter of ca. 4 nm and radius of gyration of ca. 11 Å were calculated using small-angle X-ray scattering. Finally, the change in fluorescence of the quantum dots was studied when single-stranded DNA that is recognized by telomerase was attached to the quantum dots. Their interaction with the telomerase present in cancer cells was observed and a change was seen after six days, providing an important application of these modified graphene oxide quantum dots for cancer sensing.

4.
Toxicol Sci ; 176(1): 137-146, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32294219

ABSTRACT

Paraquat (PQ) is an herbicide used in many countries, including the United States. It is also implicated as a risk factor for sporadic Parkinson's disease, especially in those living in agricultural areas and drinking well water. Studies linking PQ to sporadic Parkinson's disease are not consistent however and there appears to be interindividual differential susceptibility. One likely reason is genetically based differential susceptibility to paraquat neurotoxicity in subpopulations. To address this issue, we tested the effects of paraquat in a genetic reference population of mice (the BXD recombinant inbred strain family). In our earlier work, we showed that in genetically susceptible mice, paraquat increases iron in the ventral midbrain, the area containing the substantia nigra. Our hypothesis is that genetic variability contributes to diverse PQ-related susceptibility and iron concentration. To test this hypothesis, we treated male mice from 28 to 39 BXD strains plus the parental strains with 1 of 3 doses of paraquat, 1, 5, and 10 mg/kg 3 times on a weekly basis. At the end of the treatment period, we analyzed the ventral midbrain for concentrations of iron, copper, and zinc, also we measured the concentration of paraquat in cerebellum, and proinflammatory cytokines in serum and cerebellum. The effect on paraquat-treated mice with 5 mg/kg and principal component analysis of iron showed suggestive quantitative trait loci on chromosome 5. Overall, our results suggest that gene Prkag2 and related networks may serve as potential targets against paraquat toxicity and demonstrate the utility of genetically diverse mouse models for the study of complex human toxicity.


Subject(s)
Herbicides/toxicity , Paraquat/toxicity , Systems Biology , Animals , Brain , Iron , Male , Mesencephalon , Mice , Mice, Inbred C57BL , Parkinson Disease , Substantia Nigra
SELECTION OF CITATIONS
SEARCH DETAIL
...