Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Appl Environ Microbiol ; 89(5): e0184422, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37154753

ABSTRACT

Aryl-alcohol oxidases (AAOs) are members of the glucose-methanol-choline oxidase/dehydrogenase (GMC) superfamily. These extracellular flavoproteins have been described as auxiliary enzymes in the degradation of lignin by several white-rot basidiomycetes. In this context, they oxidize fungal secondary metabolites and lignin-derived compounds using O2 as an electron acceptor, and supply H2O2 to ligninolytic peroxidases. Their substrate specificity, including mechanistic aspects of the oxidation reaction, has been characterized in Pleurotus eryngii AAO, taken as a model enzyme of this GMC superfamily. AAOs show broad reducing-substrate specificity in agreement with their role in lignin degradation, being able to oxidize both nonphenolic and phenolic aryl alcohols (and hydrated aldehydes). In the present work, the AAOs from Pleurotus ostreatus and Bjerkandera adusta were heterologously expressed in Escherichia coli, and their physicochemical properties and oxidizing abilities were compared with those of the well-known recombinant AAO from P. eryngii. In addition, electron acceptors different from O2, such as p-benzoquinone and the artificial redox dye 2,6-Dichlorophenolindophenol, were also studied. Differences in reducing-substrate specificity were found between the AAO enzymes from B. adusta and the two Pleurotus species. Moreover, the three AAOs oxidized aryl alcohols concomitantly with the reduction of p-benzoquinone, with similar or even higher efficiencies than when using their preferred oxidizing-substrate, O2. IMPORTANCE In this work, quinone reductase activity is analyzed in three AAO flavooxidases, whose preferred oxidizing-substrate is O2. The results presented, including reactions in the presence of both oxidizing substrates-benzoquinone and molecular oxygen-suggest that such aryl-alcohol dehydrogenase activity, although less important than its oxidase activity in terms of maximal turnover, may have a physiological role during fungal decay of lignocellulose by the reduction of quinones (and phenoxy radicals) from lignin degradation, preventing repolymerization. Moreover, the resulting hydroquinones would participate in redox-cycling reactions for the production of hydroxyl free radical involved in the oxidative attack of the plant cell-wall. Hydroquinones can also act as mediators for laccases and peroxidases in lignin degradation in the form of semiquinone radicals, as well as activators of lytic polysaccharide monooxygenases in the attack of crystalline cellulose. Moreover, reduction of these, and other phenoxy radicals produced by laccases and peroxidases, promotes lignin degradation by limiting repolymerization reactions. These findings expand the role of AAO in lignin biodegradation.


Subject(s)
Pleurotus , Quinone Reductases , Lignin/metabolism , Hydrogen Peroxide , Hydroquinones , Alcohol Oxidoreductases/metabolism , Peroxidases/genetics , Ethanol , Pleurotus/metabolism , Benzoquinones
2.
Proc Natl Acad Sci U S A ; 120(10): e2214076120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848567

ABSTRACT

Lentinula is a broadly distributed group of fungi that contains the cultivated shiitake mushroom, L. edodes. We sequenced 24 genomes representing eight described species and several unnamed lineages of Lentinula from 15 countries on four continents. Lentinula comprises four major clades that arose in the Oligocene, three in the Americas and one in Asia-Australasia. To expand sampling of shiitake mushrooms, we assembled 60 genomes of L. edodes from China that were previously published as raw Illumina reads and added them to our dataset. Lentinula edodes sensu lato (s. lat.) contains three lineages that may warrant recognition as species, one including a single isolate from Nepal that is the sister group to the rest of L. edodes s. lat., a second with 20 cultivars and 12 wild isolates from China, Japan, Korea, and the Russian Far East, and a third with 28 wild isolates from China, Thailand, and Vietnam. Two additional lineages in China have arisen by hybridization among the second and third groups. Genes encoding cysteine sulfoxide lyase (lecsl) and γ-glutamyl transpeptidase (leggt), which are implicated in biosynthesis of the organosulfur flavor compound lenthionine, have diversified in Lentinula. Paralogs of both genes that are unique to Lentinula (lecsl 3 and leggt 5b) are coordinately up-regulated in fruiting bodies of L. edodes. The pangenome of L. edodes s. lat. contains 20,308 groups of orthologous genes, but only 6,438 orthogroups (32%) are shared among all strains, whereas 3,444 orthogroups (17%) are found only in wild populations, which should be targeted for conservation.


Subject(s)
Lentinula , Phylogeny , Asia, Eastern , Thailand
3.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35624755

ABSTRACT

Unspecific peroxygenases (UPOs) are extracellular fungal enzymes of biotechnological interest as self-sufficient (and more stable) counterparts of cytochrome P450 monooxygenases, the latter being present in most living cells. Expression hosts and structural information are crucial for exploiting UPO diversity (over eight thousand UPO-type genes were identified in sequenced genomes) in target reactions of industrial interest. However, while many thousands of entries in the Protein Data Bank include molecular coordinates of P450 enzymes, only 19 entries correspond to UPO enzymes, and UPO structures from only two species (Agrocybe aegerita and Hypoxylon sp.) have been published to date. In the present study, two UPOs from the basidiomycete Marasmius rotula (rMroUPO) and the ascomycete Collariella virescens (rCviUPO) were crystallized after sequence optimization and Escherichia coli expression as active soluble enzymes. Crystals of rMroUPO and rCviUPO were obtained at sufficiently high resolution (1.45 and 1.95 Å, respectively) and the corresponding structures were solved by molecular replacement. The crystal structures of the two enzymes (and two mutated variants) showed dimeric proteins. Complementary biophysical and molecular biology studies unveiled the diverse structural bases of the dimeric nature of the two enzymes. Intermolecular disulfide bridge and parallel association between two α-helices, among other interactions, were identified at the dimer interfaces. Interestingly, one of the rCviUPO variants incorporated the ability to produce fatty acid diepoxides-reactive compounds with valuable cross-linking capabilities-due to removal of the enzyme C-terminal tail located near the entrance of the heme access channel. In conclusion, different dimeric arrangements could be described in (short) UPO crystal structures.

4.
Antioxidants (Basel) ; 11(5)2022 May 06.
Article in English | MEDLINE | ID: mdl-35624779

ABSTRACT

Vegetable oils are valuable renewable resources for the production of bio-based chemicals and intermediates, including reactive epoxides of industrial interest. Enzymes are an environmentally friendly alternative to chemical catalysis in oxygenation reactions, epoxidation included, with the added advantage of their potential selectivity. The unspecific peroxygenase of Collariella virescens is only available as a recombinant enzyme (rCviUPO), which is produced in Escherichia coli for protein engineering and analytical-scale optimization of plant lipid oxygenation. Engineering the active site of rCviUPO (by substituting one, two, or up to six residues of its access channel by alanines) improved the epoxidation of individual 18-C unsaturated fatty acids and hydrolyzed sunflower oil. The double mutation at the heme channel (F88A/T158A) enhanced epoxidation of polyunsaturated linoleic and α−linolenic acids, with the desired diepoxides representing > 80% of the products (after 99% substrate conversion). More interestingly, process optimization increased (by 100-fold) the hydrolyzate concentration, with up to 85% epoxidation yield, after 1 h of reaction time with the above double variant. Under these conditions, oleic acid monoepoxide and linoleic acid diepoxide are the main products from the sunflower oil hydrolyzate.

5.
Antioxidants (Basel) ; 10(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34942990

ABSTRACT

Epoxide metabolites from n-3 and n-6 polyunsaturated fatty acids arouse interest thanks to their physiological and pharmacological activities. Their chemical synthesis has significant drawbacks, and enzymes emerge as an alternative with potentially higher selectivity and greener nature. Conversion of eleven eicosanoid, docosanoid, and other n-3/n-6 fatty acids into mono-epoxides by fungal unspecific peroxygenases (UPOs) is investigated, with emphasis on the Agrocybe aegerita (AaeUPO) and Collariella virescens (rCviUPO) enzymes. GC-MS revealed the strict regioselectivity of the n-3 and n-6 reactions with AaeUPO and rCviUPO, respectively, yielding 91%-quantitative conversion into mono-epoxides at the last double bond. Then, six of these mono-epoxides were obtained at mg-scale, purified and further structurally characterized by 1H, 13C and HMBC NMR. Moreover, chiral HPLC showed that the n-3 epoxides were also formed (by AaeUPO) with total S/R enantioselectivity (ee > 99%) while the n-6 epoxides (from rCviUPO reactions) were formed in nearly racemic mixtures. The high regio- and enantioselectivity of several of these reactions unveils the synthetic utility of fungal peroxygenases in fatty acid epoxidation.

6.
Biotechnol Adv ; 51: 107703, 2021 11 01.
Article in English | MEDLINE | ID: mdl-33545329

ABSTRACT

Selective oxyfunctionalizations of aliphatic compounds are difficult chemical reactions, where enzymes can play an important role due to their stereo- and regio-selectivity and operation under mild reaction conditions. P450 monooxygenases are well-known biocatalysts that mediate oxyfunctionalization reactions in different living organisms (from bacteria to humans). Unspecific peroxygenases (UPOs), discovered in fungi, have arisen as "dream biocatalysts" of great biotechnological interest because they catalyze the oxyfunctionalization of aliphatic and aromatic compounds, avoiding the necessity of expensive cofactors and regeneration systems, and only depending on H2O2 for their catalysis. Here, we summarize recent advances in aliphatic oxyfunctionalization reactions by UPOs, as well as the molecular determinants of the enzyme structures responsible for their activities, emphasizing the differences found between well-known P450s and the novel fungal peroxygenases.


Subject(s)
Hydrogen Peroxide , Mixed Function Oxygenases , Catalysis , Fungi , Humans
7.
Enzymes ; 47: 167-192, 2020.
Article in English | MEDLINE | ID: mdl-32951823

ABSTRACT

Aryl-alcohol oxidases (AAO) constitute a family of FAD-containing enzymes, included in the glucose-methanol-choline oxidase/dehydrogenase superfamily of proteins. They are commonly found in fungi, where their eco-physiological role is to produce hydrogen peroxide that activates ligninolytic peroxidases in white-rot (lignin-degrading) basidiomycetes or to trigger the Fenton reactions in brown-rot (carbohydrate-degrading) basidiomycetes. These enzymes catalyze the oxidation of a plethora of aromatic, and some aliphatic, polyunsaturated alcohols bearing conjugated primary hydroxyl group. Besides, the enzymes show activity on the hydrated forms of the corresponding aldehydes. Some AAO features, such as the broad range of substrates that it can oxidize (with the only need of molecular oxygen as co-substrate) and its stereoselective mechanism, confer good properties to these enzymes as industrial biocatalysts. In fact, AAO can be used for different biotechnological applications, such as flavor synthesis, secondary alcohol deracemization and oxidation of furfurals for the production of furandicarboxylic acid as a chemical building block. Also, AAO can participate in processes of interest in the wood biorefinery and textile industries as an auxiliary enzyme providing hydrogen peroxide to ligninolytic or dye-decolorizing peroxidases. Both rational design and directed molecular evolution have been employed to engineer AAO for some of the above biotechnological applications.


Subject(s)
Alcohol Oxidoreductases/chemistry , Basidiomycota/enzymology , Alcohols , Lignin/metabolism , Oxidation-Reduction , Peroxidases
8.
Behav Neurol ; 2020: 4683573, 2020.
Article in English | MEDLINE | ID: mdl-32351632

ABSTRACT

This study explores several speech parameters related to mild cognitive impairment, as well as those that might be flagging the presence of an underlying neurodegenerative process. Speech is an excellent biomarker because it is not invasive and, what is more, its analysis is rapid and economical. Our aim has been to ascertain whether the typical speech patterns of people with Alzheimer's disease are also present during the disorder's preclinical stages. To do so, we shall be using a task that involves reading out aloud. This is followed by an analysis of the recordings, looking for the possible parameters differentiating between those older people with MCI and a high probability of developing dementia and those with MCI that will not do so. We found that the disease's most differentiating parameters prior to its onset involve changes in speech duration and an alteration in rhythm rate and intensity. These parameters seem to be related to the first difficulties in lexical access among older people with AD.


Subject(s)
Cognitive Dysfunction/physiopathology , Prodromal Symptoms , Speech/physiology , Aged , Aged, 80 and over , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Cognitive Dysfunction/psychology , Disease Progression , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Periodicity , Reading , Verbal Behavior/physiology
9.
Appl Environ Microbiol ; 86(7)2020 03 18.
Article in English | MEDLINE | ID: mdl-31980430

ABSTRACT

Unspecific peroxygenases (UPOs) constitute a new family of fungal heme-thiolate enzymes in which there is high biotechnological interest. Although several thousand genes encoding hypothetical UPO-type proteins have been identified in sequenced fungal genomes and other databases, only a few UPO enzymes have been experimentally characterized to date. Therefore, gene screening and heterologous expression from genetic databases are a priority in the search for ad hoc UPOs for oxyfunctionalization reactions of interest. Very recently, Escherichia coli production of a previously described basidiomycete UPO (as a soluble and active enzyme) has been reported. Here, we explored this convenient heterologous expression system to obtain the protein products from available putative UPO genes. In this way, two UPOs from the ascomycetes Collariella virescens (syn., Chaetomium virescens) and Daldinia caldariorum were successfully obtained, purified, and characterized. Comparison of their kinetic constants for oxidation of model substrates revealed 10- to 20-fold-higher catalytic efficiency of the latter enzyme in oxidizing simple aromatic compounds (such as veratryl alcohol, naphthalene, and benzyl alcohol). Homology molecular models of these enzymes showed three conserved and two differing residues in the distal side of the heme (the latter representing two different positions of a phenylalanine residue). Interestingly, replacement of the C. virescens UPO Phe88 by the homologous residue in the D. caldariorum UPO resulted in an F88L variant with 5- to 21-fold-higher efficiency in oxidizing these aromatic compounds.IMPORTANCE UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts.


Subject(s)
Chaetomium/genetics , Escherichia coli/metabolism , Fungal Proteins/genetics , Mixed Function Oxygenases/genetics , Xylariales/genetics , Chaetomium/metabolism , Escherichia coli/genetics , Fungal Proteins/metabolism , Genes, Fungal , Microorganisms, Genetically-Modified/genetics , Microorganisms, Genetically-Modified/metabolism , Mixed Function Oxygenases/metabolism , Xylariales/metabolism
10.
Biotechnol Biofuels ; 12: 217, 2019.
Article in English | MEDLINE | ID: mdl-31528205

ABSTRACT

BACKGROUND: 5-Hydroxymethylfurfural (HMF) is a highly valuable platform chemical that can be obtained from plant biomass carbohydrates. HMF can be oxidized to 2,5-furandicarboxylic acid (FDCA), which is used as a renewable substitute for the petroleum-based terephthalic acid in polymer production. RESULTS: Aryl-alcohol oxidase (AAO) from the white-rot fungus Pleurotus eryngii is able to oxidize HMF and its derivative 2,5-diformylfuran (DFF) producing formylfurancarboxylic acid (FFCA) thanks to its activity on benzylic alcohols and hydrated aldehydes. Here, we report the ability of AAO to produce FDCA from FFCA, opening up the possibility of full oxidation of HMF by this model enzyme. During HMF reactions, an inhibitory effect of the H2O2 produced in the first two oxidation steps was found to be the cause of the lack of AAO activity on FFCA. In situ monitoring of the whole reaction by 1H-NMR confirmed the absence of any unstable dead-end products, undetected in the HPLC analyses, that could be responsible for the incomplete conversion. The deleterious effect of H2O2 was confirmed by successful HMF conversion into FDCA when the AAO reaction was carried out in the presence of catalase. On the other hand, no H2O2 formation was detected during the slow FFCA conversion by AAO in the absence of catalase, in contrast to typical oxidase reaction with HMF and DFF, suggesting an alternative mechanism as reported in some reactions of related flavo-oxidases. Moreover, several active-site AAO variants that yield nearly complete conversion in shorter reaction times than the wild-type enzyme have been identified. CONCLUSIONS: The use of catalase to remove H2O2 from the reaction mixture leads to 99% conversion of HMF into FDCA by AAO and several improved variants, although the mechanism of peroxide inhibition of the AAO action on the aldehyde group of FFCA is not fully understood.

11.
Front Neurosci ; 13: 356, 2019.
Article in English | MEDLINE | ID: mdl-31031588

ABSTRACT

Rat auditory cortex was subjected to 0.1 mA anodal direct current in seven 10-min sessions on alternate days. Based on the well-known auditory cortex control of olivocochlear regulation through corticofugal projections, auditory brainstem responses (ABRs) were recorded as an indirect test of the effectiveness and reversibility of the multisession protocol of epidural stimulation. Increases of 20-30 dB ABR auditory thresholds shown after epidural stimulation reverted back to control levels 10 min after a single session. However, increases in thresholds revert 4 days after multisession stimulation. Less changes in wave amplitudes and threshold shifts were shown in ABR recorded contralaterally to the electrically stimulated side of the brain. To assess tissue effects of epidural electric stimulation on the brain cortex, well characterized functional anatomical markers of glial cells (GFAP/astrocytes and Iba1/microglial cells) and neurons (c-Fos) were analyzed in alternate serial sections by quantitative immunocytochemistry. Restricted astroglial and microglial reactivity was observed within the cytoarchitectural limits of the auditory cortex. However, interstitial GFAP overstaining was also observed in the ventricular surface and around blood vessels, thus supporting a potential global electrolytic stimulation of the brain. These results correlate with extensive changes in the distribution of c-Fos immunoreactive neurons among layers along sensory cortices after multisession stimulation. Quantitative immunocytochemical analysis supported this idea by showing a significant increase in the number of positive neurons in supragranular layers and a decrease in layer 6 with no quantitative changes detected in layer 5. Our data indicate that epidural stimulation of the auditory cortex induces a reversible decrease in hearing sensitivity due to local, restricted epidural stimulation. A global plastic response of the sensory cortices, also reported here, may be related to electrolytic effects of electric currents.

12.
J Alzheimers Dis ; 64(2): 473-481, 2018.
Article in English | MEDLINE | ID: mdl-29914025

ABSTRACT

BACKGROUND: Speech variations enable us to map the performance of cognitive processes of syntactic, semantic, phonological, and articulatory planning and execution. Speaking is one of the first functions to be affected by neurodegenerative complaints such as Alzheimer's disease (AD), which makes the speech a highly promising biomarker for detecting the illness before the first preclinical symptoms appear. OBJECTIVE: This paper has sought to develop and validate a technological prototype that adopts an automated approach to speech analysis among older people. METHODS: It uses a mathematical algorithm based on certain discriminatory variables to estimate the probability of developing AD. RESULTS AND CONCLUSION: This device may be used at a preclinical stage by non-expert health professionals to determine the likelihood of the onset of AD.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Speech/physiology , Voice/physiology , Aged , Aged, 80 and over , Algorithms , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Speech Perception , Speech Production Measurement
13.
Sci Rep ; 8(1): 8121, 2018 05 25.
Article in English | MEDLINE | ID: mdl-29802285

ABSTRACT

Aryl-alcohol oxidase (AAO) has demonstrated to be an enzyme with a bright future ahead due to its biotechnological potential in deracemisation of chiral compounds, production of bioplastic precursors and other reactions of interest. Expanding our understanding on the AAO reaction mechanisms, through the investigation of its structure-function relationships, is crucial for its exploitation as an industrial biocatalyst. In this regard, previous computational studies suggested an active role for AAO Phe397 at the active-site entrance. This residue is located in a loop that partially covers the access to the cofactor forming a bottleneck together with two other aromatic residues. Kinetic and affinity spectroscopic studies, complemented with computational simulations using the recently developed adaptive-PELE technology, reveal that the Phe397 residue is important for product release and to help the substrates attain a catalytically relevant position within the active-site cavity. Moreover, removal of aromaticity at the 397 position impairs the oxygen-reduction activity of the enzyme. Experimental and computational findings agree very well in the timing of product release from AAO, and the simulations help to understand the experimental results. This highlights the potential of adaptive-PELE to provide answers to the questions raised by the empirical results in the study of enzyme mechanisms.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/metabolism , Biocatalysis , Catalytic Domain , Phenylalanine , Kinetics , Ligands , Models, Molecular , Pleurotus/enzymology
14.
Biotechnol Biofuels ; 11: 86, 2018.
Article in English | MEDLINE | ID: mdl-29619082

ABSTRACT

BACKGROUND: 2,5-Furandicarboxylic acid is a renewable building block for the production of polyfurandicarboxylates, which are biodegradable polyesters expected to substitute their classical counterparts derived from fossil resources. It may be produced from bio-based 5-hydroxymethylfurfural or 5-methoxymethylfurfural, both obtained by the acidic dehydration of biomass-derived fructose. 5-Methoxymethylfurfural, which is produced in the presence of methanol, generates less by-products and exhibits better storage stability than 5-hydroxymethylfurfural being, therefore, the industrial substrate of choice. RESULTS: In this work, an enzymatic cascade involving three fungal oxidoreductases has been developed for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural. Aryl-alcohol oxidase and unspecific peroxygenase act on 5-methoxymethylfurfural and its partially oxidized derivatives yielding 2,5-furandicarboxylic acid, as well as methanol as a by-product. Methanol oxidase takes advantage of the methanol released for in situ producing H2O2 that, along with that produced by aryl-alcohol oxidase, fuels the peroxygenase reactions. In this way, the enzymatic cascade proceeds independently, with the only input of atmospheric O2, to attain a 70% conversion of initial 5-methoxymethylfurfural. The addition of some exogenous methanol to the reaction further improves the yield to attain an almost complete conversion of 5-methoxymethylfurfural into 2,5-furandicarboxylic acid. CONCLUSIONS: The synergistic action of aryl-alcohol oxidase and unspecific peroxygenase in the presence of 5-methoxymethylfurfural and O2 is sufficient for the production of 2,5-furandicarboxylic acid. The addition of methanol oxidase to the enzymatic cascade increases the 2,5-furandicarboxylic acid yields by oxidizing a reaction by-product to fuel the peroxygenase reactions.

15.
Biochemistry ; 57(11): 1790-1797, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29485859

ABSTRACT

The mechanism of dioxygen reduction by the flavoenzyme aryl-alcohol oxidase was investigated with kinetic isotope, viscosity, and pL (pH/pD) effects in rapid kinetics experiments by stopped-flow spectrophotometry of the oxidative half-reaction of the enzyme. Double mixing of the enzyme in a stopped-flow spectrophotometer with [α-2H2]- p-methoxybenzyl alcohol and oxygen at varying aging times established a slow rate constant of 0.0023 s-1 for the wash-out of the D atom from the N5 atom of the reduced flavin. Thus, the deuterated substrate could be used to probe the cleavage of the N-H bond of the reduced flavin in the oxidative half-reaction. A significant and pH-independent substrate kinetic isotope effect (KIE) of 1.5 between pH 5.0 and 8.0 demonstrated that H transfer is partially limiting the oxidative half-reaction of the enzyme; a negligible solvent KIE of 1.0 between pD 5.0 and 8.0 proved a fast H+ transfer reaction that does not contribute to determining the flavin oxidation rates. Thus, a mechanism for dioxygen reduction in which the H atom originating from the reduced flavin and a H+ from a solvent exchangeable site are transferred in separate kinetic steps is proposed. The spectroscopic and kinetic data presented also showed a lack of stabilization of transient flavin intermediates. The substantial differences in the mechanistic details of O2 reduction by aryl-alcohol oxidase with respect to other alcohol oxidases like choline oxidase, pyranose 2-oxidase, and glucose oxidase further demonstrate the high level of versatility of the flavin cofactor in flavoenzymes.


Subject(s)
Alcohol Oxidoreductases/chemistry , Fungal Proteins/chemistry , Oxygen/chemistry , Pleurotus/enzymology , Protons , Hydrogen Bonding , Kinetics , Oxidation-Reduction
16.
Curr Alzheimer Res ; 15(2): 111-119, 2018.
Article in English | MEDLINE | ID: mdl-28847280

ABSTRACT

BACKGROUND: Recent studies have identified the correlation between dementia and certain vocal features, such as voice and speech changes. Vocal features may act as early markers of Alzheimer's disease (AD). Despite being present in non-pathological senescence and Mild Cognitive Impairment, especially in its amnesic subtype (aMCI), these voice- and speech-related symptoms are the first signs of AD. The purpose of this study is to verify whether these signs are related to deficits in lexical access, which appear early in AD. METHOD: Anomic deficits in persons with MCI and AD are assessed through tests on verbal memory, denomination by confrontation, and verbal fluency. In addition, an acoustic analysis of speech is conducted in a reading task to identify the acoustic parameters associated with the groups analyzed, and their relation to the degree of anomic impairment observed in each one of them. RESULTS AND CONCLUSIONS: The results show a direct relationship between the different acoustic parameters present in AD and the verbal fluency tests results.


Subject(s)
Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Speech , Voice , Aged , Alzheimer Disease/psychology , Amnesia/diagnosis , Aphasia/diagnosis , Cognitive Dysfunction/psychology , Female , Humans , Male , Memory , Neuropsychological Tests , Phonetics , Reading , Speech Perception , Speech Production Measurement
17.
Curr Alzheimer Res ; 15(2): 149-156, 2018.
Article in English | MEDLINE | ID: mdl-28847285

ABSTRACT

BACKGROUND: Sensorimotor integration mechanisms can be affected by many factors, among which are those involving neuromuscular disorders. Parkinson's disease (PD) is characterized by well-known motor symptoms, among which lately have been included motor speech deficits. Measurement of the acoustic startle reflex (ASR) and its modulations (prepulse inhibition and prepulse facilitation, PPI and PPF respectively) represent a simple and quantifiable tool to assess sensorimotor function. However, it remains unknown whether measures of the PPI and PPF are associated with motor speech deficits in PD. METHODS: A total of 88 subjects participated in this study, 52 diagnosed with PD and 36 control subjects. After obtaining written informed consent, participants were assessed with PPI at several interstimulus intervals, and PPF at 1000 ms using the SRH-Lab system (San Diego, CA). Percentage of change in the amplitude and latency of the ASR was analyzed between groups. Voice recordings were register of a specific text given to the subjects with a professional recorder and temporal patterns of speech were analyzed. RESULTS: Statistical analysis conducted in this study showed differences in PPI and PPF in subjects with PD compared to controls. In addition, discriminative parameters of voice abnormalities were observed in PD subjects related to control subjects showing a reduction in phonation time, vowel pulses, breaks, breakage and voice speech periods. CONCLUSIONS: PD presents a disruption in sensorimotor filter mechanisms and speech disorders, and there is a relationship between these alterations. The correlation between the PPI and PPF with an alteration of the voice in PD subjects contributes toward understanding mechanism underlying the neurophysiological alterations in both processes. Overall, easy and non-invasive tests such as PPI, PPF together with voice analysis may be useful to identify early stages of PD.


Subject(s)
Parkinson Disease/physiopathology , Sensory Gating , Speech Disorders/physiopathology , Aged , Female , Humans , Male , Sensory Gating/physiology , Speech/physiology , Speech Production Measurement , Voice/physiology
18.
Phys Chem Chem Phys ; 19(42): 28666-28675, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29043303

ABSTRACT

The temperature dependence of hydride transfer from the substrate to the N5 of the FAD cofactor during the reductive half-reaction of Pleurotus eryngii aryl-alcohol oxidase (AAO) is assessed here. Kinetic isotope effects on both the pre-steady state reduction of the enzyme and its steady-state kinetics, with differently deuterated substrates, suggest an environmentally-coupled quantum-mechanical tunnelling process. Moreover, those kinetic data, along with the crystallographic structure of the enzyme in complex with a substrate analogue, indicate that AAO shows a pre-organized active site that would only require the approaching of the hydride donor and acceptor for the tunnelled transfer to take place. Modification of the enzyme's active-site architecture by replacement of Tyr92, a residue establishing hydrophobic interactions with the substrate analogue in the crystal structure, in the Y92F, Y92L and Y92W variants resulted in different temperature dependence patterns that indicated a role of this residue in modulating the transfer reaction.

19.
Brain Struct Funct ; 222(8): 3491-3508, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28382577

ABSTRACT

The noradrenergic locus coeruleus (LC) plays an important role in the promotion and maintenance of arousal and alertness. Our group recently described coerulean projections to cochlear root neurons (CRNs), the first relay of the primary acoustic startle reflex (ASR) circuit. However, the role of the LC in the ASR and its modulation, prepulse inhibition (PPI), is not clear. In this study, we damaged LC neurons and fibers using a highly selective neurotoxin, DSP-4, and then assessed ASR and PPI in male and female rats. Our results showed that ASR amplitude was higher in males at 14 days after DSP-4 injection when compared to pre-administration values and those in the male control group. Such modifications in ASR amplitude did not occur in DSP-4-injected females, which exhibited ASR amplitude within the range of control values. PPI differences between males and females seen in controls were not observed in DSP-4-injected rats for any interstimulus interval tested. DSP-4 injection did not affect ASR and PPI latencies in either the male or the female groups, showing values that were consistent with the sex-related variability observed in control rats. Furthermore, we studied the noradrenergic receptor system in the cochlear nerve root using gene expression analysis. When compared to controls, DSP-4-injected males showed higher levels of expression in all adrenoceptor subtypes; however, DSP-4-injected females showed varied effects depending on the receptor type, with either up-, downregulations, or maintenance of expression levels. Lastly, we determined noradrenaline levels in CRNs and other LC-targeted areas using HPLC assays, and these results correlated with behavioral and adrenoceptor expression changes post DSP-4 injection. Our study supports the participation of LC in ASR and PPI, and contributes toward a better understanding of sex-related differences observed in somatosensory gating paradigms.


Subject(s)
Cochlear Nucleus/physiology , Locus Coeruleus/physiology , Neurons/physiology , Prepulse Inhibition/physiology , Reflex, Startle , Sex Characteristics , Acoustic Stimulation , Animals , Cochlear Nucleus/cytology , Cochlear Nucleus/metabolism , Dopamine beta-Hydroxylase/metabolism , Female , Locus Coeruleus/cytology , Locus Coeruleus/metabolism , Male , Neural Pathways/physiology , Neurons/cytology , Neurons/metabolism , Norepinephrine/metabolism , Rats, Wistar , Receptors, Adrenergic/metabolism
20.
Article in English | MEDLINE | ID: mdl-27684109

ABSTRACT

Rhythm is the speech property related to the temporal organization of sounds. Considerable evidence is now available for suggesting that dementia of Alzheimer's type is associated with impairments in speech rhythm. The aim of this study is to assess the use of an automatic computerized system for measuring speech rhythm characteristics in an oral reading task performed by 45 patients with Alzheimer's disease (AD) compared with those same characteristics among 82 healthy older adults without a diagnosis of dementia, and matched by age, sex and cultural background. Ranges of rhythmic-metric and clinical measurements were applied. The results show rhythmic differences between the groups, with higher variability of syllabic intervals in AD patients. Signal processing algorithms applied to oral reading recordings prove to be capable of differentiating between AD patients and older adults without dementia with an accuracy of 87% (specificity 81.7%, sensitivity 82.2%), based on the standard deviation of the duration of syllabic intervals. Experimental results show that the syllabic variability measurements extracted from the speech signal can be used to distinguish between older adults without a diagnosis of dementia and those with AD, and may be useful as a tool for the objective study and quantification of speech deficits in AD.


Subject(s)
Alzheimer Disease , Speech , Aged , Algorithms , Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Diagnosis, Computer-Assisted , Educational Status , Female , Humans , Language , Male , Neuropsychological Tests , Periodicity , Reading , Sensitivity and Specificity , Signal Processing, Computer-Assisted , Speech Disorders/diagnosis , Speech Disorders/etiology , Speech Disorders/physiopathology , Speech Production Measurement
SELECTION OF CITATIONS
SEARCH DETAIL
...