Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 632
Filter
1.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825139

ABSTRACT

Animals vary in the way in which they utilize energy due to diet, genetics, and management. Energy consumed by the animal supports milk production, but considerable variation among-animals in energy utilization is thought to exist. The study objective was to estimate the among-animal variance in energy utilization in data collected from Jersey cows using indirect calorimetry. Individual animal-period data from 15 studies (n = 560) were used. The data set included 115 animals from 44 to 410 DIM producing 11.5 to 39.1 kg/d of milk. On average, the 63 treatments in the data set ranged 14.8 to 19.5% CP, 21.4 to 43.0% NDF, 16.2 to 33.3% starch, and 2.21 to 6.44% crude fat. Data were analyzed with the Glimmix procedure of SAS (9.4) with random effects of cow, treatment nested within period, square, and experiment. The percentage of among-animal, dietary treatment, and experimental variance was calculated as the variance associated with each fraction divided by the sum of variance from animal, dietary treatment, experiment, and residual which was considered the total variance. The percentage of among-animal variance was characterized as high or low when the value was greater than or less than the mean value of 29.2%. Among-animal variance explained approximately 29.3 - 42.5% of the total variance in DM intake (DMI), gross energy (GE), digestible energy (DE), metabolizable energy (ME), and net energy of lactation (NEL) in Mcal/d. When energetic components of feces, urine, and heat in Mcal/d were expressed per unit of DMI the among-animal variance decreased by 20.4, 4.82, and 9.55% units, respectively. However, among-animal variance explained 4.80, 8.78, and 5.02% units more of the total variation for methane energy, lactation energy, and tissue energy in Mcal/d when expressed per unit of DMI. Variance in energetic efficiencies of DE/GE, ME/GE, and ME/DE were explained to a lesser extent by among-animal variance (averaging 17.8 ± 1.95%). The among-animal contribution to total variance in milk energy was 28.8%. Milk energy was a large proportion of the energy efficiency calculation which included milk energy plus corrected tissue energy over net energy intake which likely contributed to the 22.2% of total among-animal variance in energy efficiency. Results indicate that among-animal variance explains a large proportion of the total variation in DMI. This contributes to the variance observed for energy fractions as well as energy components when expressed in Mcal/d. Variation in energetic loss associated with methane was primarily explained by differences among-animals and was increased when expressed per unit of DMI highlighting the role of inherent animal differences in these losses.

2.
BMJ Mil Health ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604756

ABSTRACT

INTRODUCTION: Measuring cortisol during military training offers insights into physiological responses to stress. We attempted precisely timed, cortisol awakening response (CAR) and pre-sleep cortisol (PSC), and diurnal slope (peak morning minus evening cortisol), during a British Army exercise. We aimed to understand cortisol dynamics and evaluate the feasibility of CAR and PSC in this environment. METHOD: Setting: high-intensity, 10-day infantry exercise. Participants: regular infantry soldiers exercising (EX, n=25) or headquarters-based (HQ, n=6). Participants undertook PSC and WAKE and WAKE+30 min samples after 1-2 days, 5-6 days and 9-10 days. Wrist-worn GENEActiv accelerometers were used to assess sleep duration in EX only. Samples taken ±15 min from prespecified time points were deemed adherent. Validated questionnaires were used to measure resilience and perceived stress. Cortisol and cortisone were measured simultaneously by liquid chromatography tandem mass spectrometry. RESULTS: From adherent participants' samples, CAR was positive and tended to decrease as the exercise progressed. From all available data, HQ demonstrated greater diurnal slope than EX (F=7.68, p=0.02), reflecting higher morning cortisol (F=4.72, p=0.038) and lower PSC (p=0.04). No differences were seen in cortisol:cortisone ratio. 26.1% of CAR samples were adherent, with moderately strong associations between adherence and stress (r=0.41, p=0.009) but no association between adherence and day of exercise (χ2=0.27, p=0.8), sleep duration (r=-0.112, p=0.43) or resilience (r=-0.79, p=0.75). Test-retest reliability ratings for CAR were Cronbach's α of 0.48, -11.7 and 0.34 for the beginning, middle and end of the exercise, respectively. CONCLUSIONS: We observed a reduction in morning cortisol and decreased diurnal slope during a high-intensity military exercise, compared with the HQ comparator cohort in whom diurnal slope was preserved. A carefully timed CAR was not feasible in this setting.

3.
J Dairy Sci ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38608940

ABSTRACT

Lignin is a polyphenolic polymer that is an important factor in limiting fiber digestibility by ruminants. The objective of the current study was to evaluate lignin's impacts on whole animal energy utilization in diets similar in NDF content. A low lignin (LoLig) diet was formulated to contain 32.5% NDF (DM basis) and 9.59% lignin (NDF basis) and the high lignin (HiLig) diet was formulated to contain 31.0% NDF (DM basis) and 13.3% lignin (NDF basis). These diets were randomly assigned and fed to 12 late-lactation (214 ± 14.9 DIM) multiparous Jersey cows (435 ± 13.9 kg) in a 2-period crossover design. Cows fed the LoLig treatment consumed more DM than cows on the HiLig diet (19.9 vs. 18.7 ± 0.645 kg/d) while the LoLig diet was concurrently of a greater gross energy concentration (4.27 vs. 4.23 ± 0.03 Mcal/kg). As expected, increasing the concentration of lignin resulted in a reduction in total-tract NDF digestibility (45.5 vs. 40.4 ± 0.742%). Increasing lignin also resulted in a reduction in the digestibility of starch (97.7 vs. 96.3 ± 0.420) and CP (65.0 vs. 60.0 ± 0.829). Lignin also decreased the concentration of digestible energy (2.83 vs. 2.63 ± 0.04 Mcal/kg) and metabolizable energy (2.52 vs. 2.36 ± 0.05 Mcal/kg) but the concentration of net energy of lactation was similar (1.81 vs. 1.75 ± 0.06 Mcal/kg. Increasing the concentration of lignin also reduced yields of energy-corrected milk (33.7 vs. 30.0 ± 0.838 kg/d), milk protein (1.00 vs. 0.843 ± 0.027 kg/d), and milk fat (1.30 vs. 1.19 ± 0.058 kg/d). Decreasing the dietary lignin concentration did not affect daily methane emissions, averaging 391 ± 29.6 L/d. Results of this study indicate feeding a diet greater in lignin decreases the digestibility of nutrients and provides less energy for production responses and that energy supplied from digestible NDF may be less than predicted by some nutrition models.

4.
Cell Death Discov ; 10(1): 180, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632223

ABSTRACT

Neurodegenerative disorders are characterized by the progressive loss of structure and function of neurons, often including the death of the neuron. Previously, we reported that, by removing the cell death stimulus, dying/injured neurons could survive and recover from the process of regulated cell death, even if the cells already displayed various signs of cellular damage. Now we investigated the role of mitochondrial dynamics (fission/fusion, biogenesis, mitophagy) in both degeneration and in recovery of neuronal cells. In neuronal PC12 cells, exposure to ethanol (EtOH) induced massive neurite loss along with widespread mitochondrial fragmentation, mitochondrial membrane potential loss, reduced ATP production, and decreased total mitochondrial volume. By removing EtOH timely all these mitochondrial parameters recovered to normal levels. Meanwhile, cells regrew neurites and survived. Study of the mitochondrial dynamics showed that autophagy was activated only during the cellular degeneration phase (EtOH treatment) but not in the recovery phase (EtOH removed), and it was not dependent on the Parkin/PINK1 mediated mitophagy pathway. Protein expression of key regulators of mitochondrial fission, phospho-Drp1Ser616 and S-OPA1, increased during EtOH treatment and recovered to normal levels after removing EtOH. In addition, the critical role of PGC-1α mediated mitochondrial biogenesis in cellular recovery was revealed: inhibition of PGC-1α using SR-18292 after EtOH removal significantly impeded recovery of mitochondrial damage, regeneration of neurites, and cell survival in a concentration-dependent manner. Taken together, our study showed reversibility of mitochondrial morphological and functional damage in stressed neuronal cells and revealed that PGC-1α mediated mitochondrial biogenesis played a critical role in the cellular recovery. This molecular mechanism could be a target for neuroprotection and neurorescue in neurodegenerative diseases.

5.
Psychol Med ; : 1-10, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38469703

ABSTRACT

BACKGROUND: Cerebral microvascular dysfunction may contribute to depression via disruption of brain structures involved in mood regulation, but evidence is limited. We investigated the association of retinal microvascular function, a proxy for microvascular function in the brain, with incidence and trajectories of clinically relevant depressive symptoms. METHODS: Longitudinal data are from The Maastricht Study of 5952 participants (59.9 ± 8.5 years/49.7% women) without clinically relevant depressive symptoms at baseline (2010-2017). Central retinal arteriolar equivalent and central retinal venular equivalent (CRAE and CRVE) and a composite score of flicker light-induced retinal arteriolar and venular dilation were assessed at baseline. We assessed incidence and trajectories of clinically relevant depressive symptoms (9-item Patient Health Questionnaire score ⩾10). Trajectories included continuously low prevalence (low, n = 5225 [87.8%]); early increasing, then chronic high prevalence (early-chronic, n = 157 [2.6%]); low, then increasing prevalence (late-increasing, n = 247 [4.2%]); and remitting prevalence (remitting, n = 323 [5.4%]). RESULTS: After a median follow-up of 7.0 years (range 1.0-11.0), 806 (13.5%) individuals had incident clinically relevant depressive symptoms. After full adjustment, a larger CRAE and CRVE were each associated with a lower risk of clinically relevant depressive symptoms (hazard ratios [HRs] per standard deviation [s.d.]: 0.89 [95% confidence interval (CI) 0.83-0.96] and 0.93 [0.86-0.99], respectively), while a lower flicker light-induced retinal dilation was associated with a higher risk of clinically relevant depressive symptoms (HR per s.d.: 1.10 [1.01-1.20]). Compared to the low trajectory, a larger CRAE was associated with lower odds of belonging to the early-chronic trajectory (OR: 0.83 [0.69-0.99]) and a lower flicker light-induced retinal dilation was associated with higher odds of belonging to the remitting trajectory (OR: 1.23 [1.07-1.43]). CONCLUSIONS: These findings support the hypothesis that cerebral microvascular dysfunction contributes to the development of depressive symptoms.

6.
Leukemia ; 38(4): 720-728, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360863

ABSTRACT

Current strategies to treat pediatric acute lymphoblastic leukemia rely on risk stratification algorithms using categorical data. We investigated whether using continuous variables assigned different weights would improve risk stratification. We developed and validated a multivariable Cox model for relapse-free survival (RFS) using information from 21199 patients. We constructed risk groups by identifying cutoffs of the COG Prognostic Index (PICOG) that maximized discrimination of the predictive model. Patients with higher PICOG have higher predicted relapse risk. The PICOG reliably discriminates patients with low vs. high relapse risk. For those with moderate relapse risk using current COG risk classification, the PICOG identifies subgroups with varying 5-year RFS. Among current COG standard-risk average patients, PICOG identifies low and intermediate risk groups with 96% and 90% RFS, respectively. Similarly, amongst current COG high-risk patients, PICOG identifies four groups ranging from 96% to 66% RFS, providing additional discrimination for future treatment stratification. When coupled with traditional algorithms, the novel PICOG can more accurately risk stratify patients, identifying groups with better outcomes who may benefit from less intensive therapy, and those who have high relapse risk needing innovative approaches for cure.


Subject(s)
Burkitt Lymphoma , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Young Adult , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Recurrence , Risk Assessment , Disease-Free Survival
7.
Cell Commun Signal ; 22(1): 88, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297331

ABSTRACT

BACKGROUND: Retinal ganglion cell (RGC) degeneration and death cause vision loss in patients with glaucoma. Regulated cell death, once initiated, is generally considered to be an irreversible process. Recently, we showed that, by timely removing the cell death stimulus, stressed neuronal PC12 cells can recover from phosphatidylserine (PS) exposure, nuclear shrinkage, DNA damage, mitochondrial fragmentation, mitochondrial membrane potential loss, and retraction of neurites, all hallmarks of an activated cell death program. Whether the cell death process can be reversed in neurons of the central nervous system, like RGCs, is still unknown. Here, we studied reversibility of the activated cell death program in primary rat RGCs (prRGCs). METHODS: prRGCs were exposed to ethanol (5%, vol/vol) to induce cell death. At different stages of the cell death process, ethanol was removed by washing and injured prRGCs were further cultured in fresh medium to see whether they recovered. The dynamics of single cells were monitored by high-resolution live-cell spinning disk microscopy. PS exposure, mitochondrial structure, membrane potential, and intracellular Ca2+ were revealed by annexin A5-FITC, Mito-tracker, TMRM, and Fluo 8-AM staining, respectively. The distribution of cytochrome c was investigated by immunofluorescence. The ultrastructure of mitochondria was studied by electron microscopy. RESULTS: Analysis of temporal relationships between mitochondrial changes and PS exposure showed that fragmentation of the mitochondrial network and loss of mitochondrial membrane potential occurred before PS exposure. Mitochondrial changes proceeded caspase-independently, while PS exposure was caspase dependent. Interestingly, prRGCs recovered quickly from these mitochondrial changes but not from PS exposure at the plasma membrane. Correlative light and electron microscopy showed that stress-induced decrease in mitochondrial area, length and cristae number was reversible. Intracellular Ca2+ was elevated during this stage of reversible mitochondrial injury, but there was no sign of mitochondrial cytochrome c release. CONCLUSIONS: Our study demonstrates that RGCs with impaired mitochondrial structure and function can fully recover if there is no mitochondrial cytochrome c release yet, and no PS is exposed at the plasma membrane. This finding indicates that there is a time window for rescuing dying or injured RGCs, by simply removing the cell death stimulus. Video Abstract.


Subject(s)
Apoptosis , Retinal Ganglion Cells , Animals , Rats , Caspases/metabolism , Cytochromes c/metabolism , Ethanol , Retinal Ganglion Cells/metabolism
8.
J Am Heart Assoc ; 13(3): e9112, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38240213

ABSTRACT

BACKGROUND: Microvascular dysfunction is involved in the development of various cerebral disorders. It may contribute to these disorders by disrupting white matter tracts and altering brain connectivity, but evidence is scarce. We investigated the association between multiple biomarkers of microvascular function and whole-brain white matter connectivity. METHODS AND RESULTS: Cross-sectional data from The Maastricht Study, a Dutch population-based cohort (n=4326; age, 59.4±8.6 years; 49.7% women). Measures of microvascular function included urinary albumin excretion, central retinal arteriolar and venular calibers, composite scores of flicker light-induced retinal arteriolar and venular dilation, and plasma biomarkers of endothelial dysfunction (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin, and von Willebrand factor). White matter connectivity was calculated from 3T diffusion magnetic resonance imaging to quantify the number (average node degree) and organization (characteristic path length, global efficiency, clustering coefficient, and local efficiency) of white matter connections. A higher plasma biomarkers of endothelial dysfunction composite score was associated with a longer characteristic path length (ß per SD, 0.066 [95% CI, 0.017-0.114]) after adjustment for sociodemographic, lifestyle, and cardiovascular factors but not with any of the other white matter connectivity measures. After multiple comparison correction, this association was nonsignificant. None of the other microvascular function measures were associated with any of the connectivity measures. CONCLUSIONS: These findings suggest that microvascular dysfunction as measured by indirect markers is not associated with whole-brain white matter connectivity.


Subject(s)
White Matter , Humans , Female , Middle Aged , Aged , Male , White Matter/pathology , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/pathology , Diffusion Magnetic Resonance Imaging , Biomarkers
9.
Hormones (Athens) ; 23(1): 25-34, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37910311

ABSTRACT

Thyroid eye disease (TED) is an autoimmune orbital inflammatory disease which ranges from mild to severe. Tissue remodeling, fibrosis and fat proliferation cause changes in the orbital tissues which can affect esthetics and visual function. In its severe form, it is sight threatening, debilitating, and disfiguring and may lead to social stigma, the embarrassment about which has an impact on the quality of life of those affected and the family members. The pathogenesis of TED, which is influenced by genetic, immunological, and environmental factors, is complex and not fully elucidated. However, it remains unknown what factors determine the severity of the disease. Recent research has revealed a number of diagnostic and prognostic biomarkers of this disease. In this overview of TED, we focus on new insights and perspectives regarding biological agents that may provide a basis for new treatment modalities.


Subject(s)
Autoimmune Diseases , Graves Ophthalmopathy , Humans , Graves Ophthalmopathy/therapy , Quality of Life
10.
Alzheimers Dement ; 20(1): 316-329, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37611119

ABSTRACT

INTRODUCTION: The retina may provide non-invasive, scalable biomarkers for monitoring cerebral neurodegeneration. METHODS: We used cross-sectional data from The Maastricht study (n = 3436; mean age 59.3 years; 48% men; and 21% with type 2 diabetes [the latter oversampled by design]). We evaluated associations of retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses with cognitive performance and magnetic resonance imaging indices (global grey and white matter volume, hippocampal volume, whole brain node degree, global efficiency, clustering coefficient, and local efficiency). RESULTS: After adjustment, lower thicknesses of most inner retinal layers were significantly associated with worse cognitive performance, lower grey and white matter volume, lower hippocampal volume, and worse brain white matter network structure assessed from lower whole brain node degree, lower global efficiency, higher clustering coefficient, and higher local efficiency. DISCUSSION: The retina may provide biomarkers that are informative of cerebral neurodegenerative changes in the pathobiology of dementia.


Subject(s)
Diabetes Mellitus, Type 2 , White Matter , Male , Humans , Middle Aged , Female , White Matter/diagnostic imaging , White Matter/pathology , Cross-Sectional Studies , Retina/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Biomarkers , Cognition
11.
BMJ Mil Health ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38053268

ABSTRACT

INTRODUCTION: Wearable sensor technologies enable Defence to optimise human performance, remotely identify physiological abnormalities and enhance medical support. Maximising the acceptability of devices will ensure they are worn alongside other equipment. This study assessed the acceptability and comfort of four devices at different anatomical locations during military training. METHOD: A cross-sectional pilot study during a live firing infantry exercise or adventurous training assessed four anatomical locations concurrently over 5 days: finger, wrist, upper arm and chest. Participants rated comfort, acceptability and preference using a standardised questionnaire after 12 hours and 5 days of wear. RESULTS: Twenty-one regular British Army personnel soldiers participated, aged 24.4 (4.3) years. The upper arm location received the highest rating by participants for comfort, followed in order by wrist, finger and chest (p=0.002, Χ2=40.0). The finger was most commonly identified as uncomfortable during specific activities (76%), followed by chest (48%), wrist (23%) and upper arm devices (14%). There was no significant difference in participant confidence in the devices to collect data or allow movement, but there was a trend towards greater confidence in upper arm and wrist locations to stay in position than the others (p=0.059, Χ2=28.0). After 5 days of wear, 43% of participants said they preferred the upper arm for comfort, followed by wrist (36%), finger (24%) and chest (10%). 73% and 71% would wear the wrist and upper arm devices on deployed operations, compared with 29% and 24% for chest and finger devices, respectively. CONCLUSION: The upper arm location offered greater acceptability and comfort than finger, wrist or chest locations. It is essential to consider such findings from occupationally relevant settings when selecting wearable technology. A larger service evaluation in diverse settings is recommended to guide the choice of the most acceptable wearable devices across different equipment, roles and environments.

12.
bioRxiv ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014342

ABSTRACT

Dravet syndrome (DS) is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications (ASM). Preclinical DS animal models are a valuable tool to identify candidate ASMs for these patients. Among these, scn1lab mutant zebrafish exhibiting spontaneous seizure-like activity are particularly amenable to large-scale drug screening. Prior screening in a scn1lab mutant zebrafish line generated using N-ethyl-Nnitrosourea (ENU) identified valproate, stiripentol, and fenfluramine e.g., Federal Drug Administration (FDA) approved drugs with clinical application in the DS population. Successful phenotypic screening in scn1lab mutant zebrafish consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behavior and (ii) an electrophysiology-based assay, using in vivo local field potential (LFP) recordings, to quantify electrographic seizure-like events. Using this strategy more than 3000 drug candidates have been screened in scn1lab zebrafish mutants. Here, we curated a list of nine additional anti-seizure drug candidates recently identified in preclinical models: 1-EBIO, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-EBIO, chlorzoxazone and lisuride. However, second-stage LFP recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of ASMs.

13.
J Dairy Sci ; 106(12): 8809-8820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37690720

ABSTRACT

Advancing technologies of the corn dry-milling ethanol production process includes the mechanical separation of fiber-containing particles from a portion of plant- and yeast-based nitrogenous particles. The resulting high-protein processed corn coproduct (HPCoP) contains approximately 52% crude protein (CP), 36% neutral detergent fiber (NDF), 6.4% total fatty acids (TFA). The objective of this experiment was to examine the effects of replacing nonenzymatically browned soybean meal with the HPCoP on dry matter intake (DMI), energy and N utilization, and milk production of lactating Jersey cows. Twelve multiparous Jersey cows were used in a triplicated 4 × 4 Latin square design consisting of four 28-d periods. Cows were blocked by milk yield and assigned randomly to 1 of 4 treatment diets that contained HPCoP (dry matter [DM] basis) at (1) 0%; (2) 2.6%; (3) 5.4%; and (4) 8.0%. Diets were formulated to be isonitrogenous and thus replace nonenzymatically browned soybean meal with HPCoP in the concentrate mix, while forage inclusion remained the same across diets. Increasing the concentration of HPCoP had no effect on DMI (mean ± SE; 19.9 ± 0.62 kg/d), but tended to linearly increase milk yield (27.8, 28.5, 29.8, and 29.0 ± 1.00 kg/d). Although no difference was observed in the concentration of milk protein with increasing inclusion of HPCoP (3.40% ± 0.057%), the concentration of fat linearly increased with the inclusion of HPCoP (5.05%, 5.19%, 5.15%, 5.47% ± 0.18%). No differences were observed in the digestibility of DM, NDF, CP, TFA, and gross energy averaging 66.6% ± 0.68%, 49.0% ± 1.03%, 66.1% ± 0.82%, 73.6% ± 1.73%, 66.3% ± 0.72%, respectively, with increasing HPCoP inclusion. The concentration of dietary gross energy linearly increased with increasing concentrations of HPCoP (4.25, 4.26, 4.28, and 4.31 ± 0.01 Mcal/kg), but no difference was observed in digestible energy and metabolizable energy (ME) across treatments averaging 2.83 ± 0.033 and 2.53 ± 0.043 Mcal/kg, respectively. Concentration of dietary net energy for lactation (NEL) tended to increase with increasing HPCoP (1.61, 1.72, 1.74, 1.72 ± 0.054 Mcal/kg) with the ratio of NEL:ME increasing linearly with increasing HPCoP inclusion (0.648, 0.676, 0.687, 0.677 ± 0.0124). Results of this study suggest that inclusion of the HPCoP can replace nonenzymatically browned soybean meal and support normal milk production.


Subject(s)
Lactation , Zea mays , Female , Cattle , Animals , Zea mays/metabolism , Animal Feed/analysis , Milk/metabolism , Diet/veterinary , Fatty Acids/metabolism , Dietary Fiber/metabolism , Glycine max , Saccharomyces cerevisiae/metabolism , Nitrogen/metabolism , Rumen/metabolism , Silage/analysis , Digestion
14.
Anim Microbiome ; 5(1): 46, 2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37770990

ABSTRACT

BACKGROUND: The dog is the most popular companion animal and is a valuable large animal model for several human diseases. Canine immune-mediated hematological diseases, including immune-mediated hemolytic anemia (IMHA) and immune thrombocytopenia (ITP), share many features in common with autoimmune hematological diseases of humans. The gut microbiome has been linked to systemic illness, but few studies have evaluated its association with immune-mediated hematological disease. To address this knowledge gap, 16S rRNA gene sequencing was used to profile the fecal microbiota of dogs with spontaneous IMHA and ITP at presentation and following successful treatment. In total, 21 affected and 13 healthy control dogs were included in the study. RESULTS: IMHA/ITP is associated with remodeling of fecal microbiota, marked by decreased relative abundance of the spirochete Treponema spp., increased relative abundance of the pathobionts Clostridium septicum and Escherichia coli, and increased overall microbial diversity. Logistic regression analysis demonstrated that Treponema spp. were associated with decreased risk of IMHA/ITP (odds ratio [OR] 0.24-0.34), while Ruminococcaceae UCG-009 and Christensenellaceae R-7 group were associated with increased risk of disease (OR = 6.84 [95% CI 2-32.74] and 8.36 [95% CI 1.85-71.88] respectively). CONCLUSIONS: This study demonstrates an association of immune-mediated hematological diseases in dogs with fecal dysbiosis, and points to specific bacterial genera as biomarkers of disease. Microbes identified as positive or negative risk factors for IMHA/ITP represent an area for future research as potential targets for new diagnostic assays and/or therapeutic applications.

15.
BMC Neurol ; 23(1): 293, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37543602

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common cause of dementia, and due to increasing life expectancy the number of patients is expected to grow. The diagnosis of AD involves the use of biomarkers determined by an amyloid PET scan or cerebrospinal fluid analyses that are either invasive or expensive, and not available in each hospital, thus limiting their usage as a front-line screener. The TearAD study aims to use tear fluid as a potential source for AD biomarkers. In previous reports, we demonstrated that AD biomarkers amyloid-beta and tau, are measurable in tear fluid and are associated with disease severity and neurodegeration. This study aims to validate previous results in a larger cohort and evaluate the diagnostic accuracy of tear biomarkers to discriminate between individuals with and without neurodegeneration as determined by hippocampal atrophy. METHODS: The TearAD study is an observational longitudinal multi-center study that will enroll 50 cognitively healthy controls, 50 patients with subjective cognitive decline, 50 patients with mild cognitive impairment and 50 patients with AD dementia from the memory clinic. Participants will be examined at baseline, after one year, and after two years follow-up. Study assessments include neuropsychological tests and ophthalmic examination. All participants will receive a MRI scan, and a subset of the study population will undergo cerebral spinal fluid collection and an amyloid PET scan. Tear fluid will be collected with Schirmer strips and levels of Aß38, Aß40, Aß42, t-tau and p-tau in tear fluid will be determined using multiplex immunoassays. Blood samples will be collected from all participants. Images of the retina will be obtained with a standard, hyperspectral and ultra-wide field fundus camera. Additionally, macular pigment optical density will be measured with the macular pigment reflectometer, and cross-sectional images of the retina will be obtained through optical coherence tomography imaging. DISCUSSION: The TearAD study will provide insight into the potential diagnostic use of tear biomarkers as a minimally invasive and low cost tool for the screening and diagnosis of AD. TRIAL REGISTRATION: Retrospectively registered at clinicaltrials.gov (NCT05655793).


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Macular Pigment , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Cognitive Dysfunction/psychology , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Peptide Fragments
16.
Diabetologia ; 66(11): 2030-2041, 2023 11.
Article in English | MEDLINE | ID: mdl-37589735

ABSTRACT

AIMS/HYPOTHESIS: To assess the associations between glucose metabolism status and a range of continuous measures of glycaemia with corneal nerve fibre measures, as assessed using corneal confocal microscopy. METHODS: We used population-based observational cross-sectional data from the Maastricht Study of N=3471 participants (mean age 59.4 years, 48.4% men, 14.7% with prediabetes, 21.0% with type 2 diabetes) to study the associations, after adjustment for demographic, cardiovascular risk and lifestyle factors, between glucose metabolism status (prediabetes and type 2 diabetes vs normal glucose metabolism) plus measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, skin autofluorescence [SAF] and duration of diabetes) and composite Z-scores of corneal nerve fibre measures or individual corneal nerve fibre measures (corneal nerve bifurcation density, corneal nerve density, corneal nerve length and fractal dimension). We used linear regression analysis, and, for glucose metabolism status, performed a linear trend analysis. RESULTS: After full adjustment, a more adverse glucose metabolism status was associated with a lower composite Z-score for corneal nerve fibre measures (ß coefficients [95% CI], prediabetes vs normal glucose metabolism -0.08 [-0.17, 0.03], type 2 diabetes vs normal glucose metabolism -0.14 [-0.25, -0.04]; linear trend analysis showed a p value of 0.001), and higher levels of measures of glycaemia (fasting plasma glucose, 2 h post-load glucose, HbA1c, SAF and duration of diabetes) were all significantly associated with a lower composite Z-score for corneal nerve fibre measures (per SD: -0.09 [-0.13, -0.05], -0.07 [-0.11, -0.03], -0.08 [-0.11, -0.04], -0.05 [-0.08, -0.01], -0.09 [-0.17, -0.001], respectively). In general, directionally similar associations were observed for individual corneal nerve fibre measures. CONCLUSIONS/INTERPRETATION: To our knowledge, this is the first population-based study to show that a more adverse glucose metabolism status and higher levels of glycaemic measures were all linearly associated with corneal neurodegeneration after adjustment for an extensive set of potential confounders. Our results indicate that glycaemia-associated corneal neurodegeneration is a continuous process that starts before the onset of type 2 diabetes. Further research is needed to investigate whether early reduction of hyperglycaemia can prevent corneal neurodegeneration.


Subject(s)
Diabetes Mellitus, Type 2 , Prediabetic State , Female , Humans , Male , Middle Aged , Blood Glucose/metabolism , Cross-Sectional Studies , Glucose , Microscopy, Confocal , Prediabetic State/complications
17.
Sci Rep ; 13(1): 11045, 2023 07 08.
Article in English | MEDLINE | ID: mdl-37422517

ABSTRACT

Loss of neurons in chronic neurodegenerative diseases may occur over a period of many years. Once initiated, neuronal cell death is accompanied by distinct phenotypic changes including cell shrinkage, neurite retraction, mitochondrial fragmentation, nuclear condensation, membrane blebbing and phosphatidylserine (PS) exposure at the plasma membrane. It is still poorly understood which events mark the point of no return for dying neurons. Here we analyzed the neuronal cell line SH-SY5Y expressing cytochrome C (Cyto.C)-GFP. Cells were exposed temporarily to ethanol (EtOH) and tracked longitudinally in time by light and fluorescent microscopy. Exposure to EtOH induced elevation of intracellular Ca2+ and reactive oxygen species, cell shrinkage, neurite retraction, mitochondrial fragmentation, nuclear condensation, membrane blebbing, PS exposure and Cyto.C release into the cytosol. Removing EtOH at predetermined time points revealed that all phenomena except Cyto.C release occurred in a phase of neuronal cell death in which full recovery to a neurite-bearing cell was still possible. Our findings underscore a strategy of treating chronic neurodegenerative diseases by removing stressors from neurons and harnessing intracellular targets that delay or prevent trespassing the point of no return.


Subject(s)
Neuroblastoma , Neurodegenerative Diseases , Humans , Cytochromes c/metabolism , Apoptosis/physiology , Neuroblastoma/metabolism , Neurons/metabolism , Neurodegenerative Diseases/metabolism
18.
Med Image Anal ; 88: 102848, 2023 08.
Article in English | MEDLINE | ID: mdl-37263110

ABSTRACT

In this research, we studied the duality between cataractous retinal image dehazing and image denoising and proposed that the dehazing task for cataractous retinal images can be achieved with the combination of image denoising and sigmoid function. To do so, we introduce the double-pass fundus reflection model in the YPbPr color space and developed a multilevel stimulated denoising strategy termed MUTE. The transmission matrix of the cataract layer is expressed as the superposition of denoised raw images of different levels weighted by pixel-wise sigmoid functions. We further designed an intensity-based cost function that can guide the updating of the model parameters. They are updated by gradient descent with adaptive momentum estimation, which gives us the final refined transmission matrix of the cataract layer. We tested our methods on cataract retinal images from both public and proprietary databases, and we compared the performance of our method with other state-of-the-art enhancement methods. Both visual assessments and objective assessments show the superiority of the proposed method. We further demonstrated three potential applications including blood vessel segmentation, retinal image registrations, and diagnosing with enhanced images that may largely benefit from our proposed methods.


Subject(s)
Cataract , Retina , Humans , Retina/diagnostic imaging , Algorithms , Cataract/diagnostic imaging
19.
JDS Commun ; 4(3): 191-195, 2023 May.
Article in English | MEDLINE | ID: mdl-37360119

ABSTRACT

Feed is often offered to a cow in the milking unit of an automated milking system. This offering provides nutrients but also acts as a reward to the cow for entering the unit. To complement the partial total mixed ration and to enable handling, flow, and delivery within this mechanized system, this offering is usually a mix of feeds that are combined and manufactured into a feed pellet. The objective of this experiment was to compare 4 different pelleting formulation strategies and measure the effects of feed preference in lactating Jersey cattle. To test the objective, a taste preference experiment was conducted with 8 multiparous lactating Jersey cattle (289 ± 25.3 d in milk, 26.0 ± 2.45 kg of milk yield, 19.36 ± 1.29 kg of dry matter intake). Four formulation strategies were tested including (1) a pellet containing feeds commonly included in the concentrate mixture of a total mixed ration, including 43.1% corn grain, 26.3% dried distillers grains, 3.18% soybean meal, and 5.6% vitamin and mineral premix (CMIX), (2) a pellet of dry corn gluten feed (CGF), (3) a pellet including feedstuffs that are considered to be highly palatable (53.2% wheat middling, 15.7% dried corn distillers grains and solubles, 15.2% cane molasses, and 1.81% oregano (FLVR), and (4) a high-energy pellet (ENG) consisting of 61% corn grain and 26.2% wheat middlings. Cows were offered 0.50 kg of each in a randomized arrangement within the feed bunk for 1 h or until the feed was fully consumed. According to the procedure, cows were offered all 4 treatments for the first 4 d, then the most preferred feed for each cow was removed, and the remaining 3 feeds were offered for 3 d. The process was repeated for the last 2 d. Feed preference was ranked from 1 to 4 with 1 being the most preferred and 4 the least. The resulting preference ranking was CGF (1.25 ± 0.463), FLVR (2.5 ± 0.926), CMIX (2.88 ± 0.835), and ENG (3.13 ± 0.991). These results were subsequently examined utilizing the Plackett-Luce analysis to examine the probability animals would choose a given pellet first based on the current data set. The analysis determined probabilities of first choice as 78.6 ± 0.601% CGF, 9.38 ± 0.438% FLVR, 4.94 ± 0.453% ENG, and 7.11 ± 0.439% CMIX. A Z-test was also conducted to determine if the percentage a treatment will be chosen first differed from the mean value of no preference at 25%. Corn gluten feed and ENG differed from the mean value while no difference was observed for FLVR and CMIX. Results suggest that animals exhibit a high degree of preference for CGF pellets and that this preference is greater than pellets containing other feed ingredients. Alternatively, cows appeared to exhibit the lowest preference for a high-energy pellet containing mostly corn and wheat middlings.

20.
J Alzheimers Dis ; 93(4): 1471-1483, 2023.
Article in English | MEDLINE | ID: mdl-37182886

ABSTRACT

BACKGROUND: If retinal indices of neurodegeneration are to be biomarkers for the monitoring of cerebral neurodegeneration, it is important to establish whether potentially modifiable risk factors for dementia are associated with retinal neurodegenerative changes. OBJECTIVE: To study associations of dementia risk factors with retinal sensitivity, an index of retinal neural function, and retinal nerve fiber layer (RNFL) thickness, an index of retinal neural structure. METHODS: We used cross-sectional data from The Maastricht Study (up to 5,666 participants, 50.5% men, mean age 59.7), and investigated associations with regression analyses (adjusted for potential confounders). RESULTS: Most risk factors under study (i.e., hyperglycemia, unhealthy diet, lower cardiorespiratory fitness, smoking, alcohol consumption, and hypertension) were significantly associated with lower retinal sensitivity and lower RNFL thickness. CONCLUSION: Findings of this population-based study support the concept that retinal neural indices may be biomarkers for the monitoring of therapeutic strategies that aim to prevent early-stage cerebral neurodegeneration and, ultimately, dementia.


Subject(s)
Dementia , Nerve Fibers , Male , Humans , Female , Cross-Sectional Studies , Retina , Biomarkers , Tomography, Optical Coherence
SELECTION OF CITATIONS
SEARCH DETAIL
...