Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 1910, 2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35115579

ABSTRACT

Increasing the intensity to which high power laser pulses are focused has opened up new research possibilities, including promising new approaches to particle acceleration and phenomena such as high field quantum electrodynamics. Whilst the intensity achievable with a laser pulse of a given power can be increased via tighter focusing, the focal spot profile also plays an important role in the interaction physics. Here we show that the spatial-intensity distribution, and specifically the ratio of the intensity in the peak of the laser focal spot to the halo surrounding it, is important in the interaction of ultraintense laser pulses with solid targets. By comparing proton acceleration measurements from foil targets irradiated with by a near-diffraction-limited wavelength scale focal spot and larger F-number focusing, we find that this spatial-intensity contrast parameter strongly influences laser energy coupling to fast electrons. We find that for multi-petawatt pulses, spatial-intensity contrast is potentially as important as temporal-intensity contrast.

2.
Rev Sci Instrum ; 89(8): 083302, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30184626

ABSTRACT

Diagnosing fast electrons is important to understand the physics underpinning intense laser-produced plasmas. Here, we demonstrate experimentally that a Cherenkov radiation-based optical fibre can serve as a reliable diagnostic to characterize the fast electrons escaping from solid targets irradiated by ultra-intense laser pulses. Using optical fibre loops, the number and angular distributions of the escaping electrons are obtained. The data agree well with measurements made using image plate stacks. The optical fibre can be operated at high-repetition rates and is insensitive to x-rays and ion beams, which makes it advantageous over other routinely used fast electron diagnostics in some aspects.

3.
Phys Rev Lett ; 120(20): 204801, 2018 May 18.
Article in English | MEDLINE | ID: mdl-29864368

ABSTRACT

A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H^{+}/D^{+} ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3±0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4±0.7) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.

4.
Rev Sci Instrum ; 87(8): 083304, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27587110

ABSTRACT

We report on the experimental characterisation of laser-driven ion beams using a Thomson Parabola Spectrometer (TPS) equipped with trapezoidally shaped electric plates, proposed by Gwynne et al. [Rev. Sci. Instrum. 85, 033304 (2014)]. While a pair of extended (30 cm long) electric plates was able to produce a significant increase in the separation between neighbouring ion species at high energies, deploying a trapezoidal design circumvented the spectral clipping at the low energy end of the ion spectra. The shape of the electric plate was chosen carefully considering, for the given spectrometer configuration, the range of detectable ion energies and species. Analytical tracing of the ion parabolas matches closely with the experimental data, which suggests a minimal effect of fringe fields on the escaping ions close to the wedged edge of the electrode. The analytical formulae were derived considering the relativistic correction required for the high energy ions to be characterised using such spectrometer.

5.
Phys Rev Lett ; 113(18): 185001, 2014 Oct 31.
Article in English | MEDLINE | ID: mdl-25396375

ABSTRACT

The influence of lattice-melt-induced resistivity gradients on the transport of mega-ampere currents of fast electrons in solids is investigated numerically and experimentally using laser-accelerated protons to induce isochoric heating. Tailoring the heating profile enables the resistive magnetic fields which strongly influence the current propagation to be manipulated. This tunable laser-driven process enables important fast electron beam properties, including the beam divergence, profile, and symmetry to be actively tailored, and without recourse to complex target manufacture.

6.
Phys Med ; 30(3): 255-70, 2014 May.
Article in English | MEDLINE | ID: mdl-24100298

ABSTRACT

Suitable instrumentation for laser-accelerated proton (ion) beams is critical for development of integrated, laser-driven ion accelerator systems. Instrumentation aimed at beam diagnostics and control must be applied to the driving laser pulse, the laser-plasma that forms at the target and the emergent proton (ion) bunch in a correlated way to develop these novel accelerators. This report is a brief overview of established diagnostic techniques and new developments based on material presented at the first workshop on 'Instrumentation for Diagnostics and Control of Laser-accelerated Proton (Ion) Beams' in Abingdon, UK. It includes radiochromic film (RCF), image plates (IP), micro-channel plates (MCP), Thomson spectrometers, prompt inline scintillators, time and space-resolved interferometry (TASRI) and nuclear activation schemes. Repetition-rated instrumentation requirements for target metrology are also addressed.


Subject(s)
Lasers , Particle Accelerators/instrumentation , Protons , Spectrum Analysis
7.
Phys Rev Lett ; 111(9): 095001, 2013 Aug 30.
Article in English | MEDLINE | ID: mdl-24033041

ABSTRACT

Fast electron transport in Si, driven by ultraintense laser pulses, is investigated experimentally and via 3D hybrid particle-in-cell simulations. A transition from a Gaussian-like to an annular fast electron beam profile is demonstrated and explained by resistively generated magnetic fields. The results highlight the potential to completely transform the beam transport pattern by tailoring the resistivity-temperature profile at temperatures as low as a few eV.

8.
Phys Rev Lett ; 106(22): 225003, 2011 Jun 03.
Article in English | MEDLINE | ID: mdl-21702607

ABSTRACT

By using a thick (250 µm) target with 350 µm radius of curvature, the intense proton beam driven by a petawatt laser is focused at a distance of ∼1 mm from the target for all detectable energies up to ∼25 MeV. The thickness of the foil facilitates beam focusing as it suppresses the dynamic evolution of the beam divergence caused by peaked electron flux distribution at the target rear side. In addition, reduction in inherent beam divergence due to the target thickness relaxes the curvature requirement for short-range focusing. Energy resolved mapping of the proton beam trajectories from mesh radiographs infers the focusing and the data agree with a simple geometrical modeling based on ballistic beam propagation.

9.
Phys Rev Lett ; 106(18): 185004, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21635098

ABSTRACT

The effect of lattice structure on the transport of energetic (MeV) electrons in solids irradiated by ultraintense laser pulses is investigated using various allotropes of carbon. We observe smooth electron transport in diamond, whereas beam filamentation is observed with less ordered forms of carbon. The highly ordered lattice structure of diamond is shown to result in a transient state of warm dense carbon with metalliclike conductivity, at temperatures of the order of 1-100 eV, leading to suppression of electron beam filamentation.

10.
Phys Rev Lett ; 105(19): 195008, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-21231179

ABSTRACT

The use of two separate ultraintense laser pulses in laser-proton acceleration was compared to the single pulse case employing the same total laser energy. A double pulse profile, with the temporal separation of the pulses varied between 0.75-2.5 ps, was shown to result in an increased maximum proton energy and an increase in conversion efficiency to fast protons by up to a factor of 3.3. Particle-in-cell simulations indicate the existence of a two stage acceleration process. The second phase, induced by the main pulse preferentially accelerates slower protons located deeper in the plasma, in contrast to conventional target normal sheath acceleration.

11.
Rev Sci Instrum ; 80(11): 113506, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19947730

ABSTRACT

The experimental arrangement for the investigation of high-field laser-induced processes using a broadband proton probe beam has been modified to enable the detection of the ultrafast motion of field fronts. It is typical in such experiments for the target to be oriented perpendicularly with respect to the principal axis of the probe beam. It is demonstrated here, however, that the temporal imaging properties of the diagnostic arrangement are altered drastically by placing the axis (or plane) of the target at an oblique angle to the transverse plane of the probe beam. In particular, the detection of the motion of a laser-driven field front along a wire at a velocity of (0.95+/-0.05)c is described.

12.
Phys Rev Lett ; 102(22): 225002, 2009 Jun 05.
Article in English | MEDLINE | ID: mdl-19658870

ABSTRACT

Coherent wake emission is a unique source of extreme ultraviolet radiation and has been recently shown to provide the basis for intense attosecond light. Here we present a novel scheme, supported by particle-in-cell simulations, demonstrating that enhancement and spectral control of the coherent wake emission signal can be achieved by modifying the interaction plasma density ramp. Significant tunable enhancement of harmonic emission is verified experimentally, with factors of >50 in relative signal increase achieved in a narrow band of harmonics at the cutoff frequency.

13.
Phys Rev Lett ; 102(19): 194801, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19518962

ABSTRACT

The interaction of a 3x10;{19} W/cm;{2} laser pulse with a metallic wire has been investigated using proton radiography. The pulse is observed to drive the propagation of a highly transient field along the wire at the speed of light. Within a temporal window of 20 ps, the current driven by this field rises to its peak magnitude approximately 10;{4} A before decaying to below measurable levels. Supported by particle-in-cell simulation results and simple theoretical reasoning, the transient field measured is interpreted as a charge-neutralizing disturbance propagated away from the interaction region as a result of the permanent loss of a small fraction of the laser-accelerated hot electron population to vacuum.

14.
Rev Sci Instrum ; 80(3): 033301, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19334914

ABSTRACT

This article reports on an experimental method to fully reconstruct laser-accelerated proton beam parameters called radiochromic film imaging spectroscopy (RIS). RIS allows for the characterization of proton beams concerning real and virtual source size, envelope- and microdivergence, normalized transverse emittance, phase space, and proton spectrum. This technique requires particular targets and a high resolution proton detector. Therefore thin gold foils with a microgrooved rear side were manufactured and characterized. Calibrated GafChromic radiochromic film (RCF) types MD-55, HS, and HD-810 in stack configuration were used as spatial and energy resolved film detectors. The principle of the RCF imaging spectroscopy was demonstrated at four different laser systems. This can be a method to characterize a laser system with respect to its proton-acceleration capability. In addition, an algorithm to calculate the spatial and energy resolved proton distribution has been developed and tested to get a better idea of laser-accelerated proton beams and their energy deposition with respect to further applications.

15.
Phys Rev Lett ; 102(5): 055001, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19257515

ABSTRACT

Guided transport of a relativistic electron beam in solid is achieved experimentally by exploiting the strong magnetic fields created at the interface of two metals of different electrical resistivities. This is of substantial relevance to the Fast Ignitor approach to fusion energy production [M. Tabak, Phys. Plasmas 12, 057305 (2005)10.1063/1.1871246], since it allows the electron deposition to be spatially tailored-thus adding substantial design flexibility and preventing inefficiencies due to electron beam spreading. In the experiment, optical transition radiation and thermal emission from the target rear surface provide a clear signature of the electron confinement within a high resistivity tin layer sandwiched transversely between two low resistivity aluminum slabs. The experimental data are found to agree well with numerical simulations.

16.
Phys Rev Lett ; 100(10): 105004, 2008 Mar 14.
Article in English | MEDLINE | ID: mdl-18352198

ABSTRACT

The emission characteristics of intense laser driven protons are controlled using ultrastrong (of the order of 10(9) V/m) electrostatic fields varying on a few ps time scale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses.

17.
Phys Rev Lett ; 99(8): 085001, 2007 Aug 24.
Article in English | MEDLINE | ID: mdl-17930952

ABSTRACT

The first evidence of x-ray harmonic radiation extending to 3.3 A, 3.8 keV (order n>3200) from petawatt class laser-solid interactions is presented, exhibiting relativistic limit efficiency scaling (eta approximately n{-2.5}-n{-3}) at multi-keV energies. This scaling holds up to a maximum order, n{RO} approximately 8{1/2}gamma;{3}, where gamma is the relativistic Lorentz factor, above which the first evidence of an intensity dependent efficiency rollover is observed. The coherent nature of the generated harmonics is demonstrated by the highly directional beamed emission, which for photon energy hnu>1 keV is found to be into a cone angle approximately 4 degrees , significantly less than that of the incident laser cone (20 degrees ).


Subject(s)
Lasers , Photons , Gamma Rays , X-Rays
18.
Phys Rev Lett ; 98(14): 145001, 2007 Apr 06.
Article in English | MEDLINE | ID: mdl-17501281

ABSTRACT

An experimental investigation of lateral electron transport in thin metallic foil targets irradiated by ultraintense (>or=10(19) W/cm2) laser pulses is reported. Two-dimensional spatially resolved ion emission measurements are used to quantify electric-field generation resulting from electron transport. The measurement of large electric fields ( approximately 0.1 TV/m) millimeters from the laser focus reveals that lateral energy transport continues long after the laser pulse has decayed. Numerical simulations confirm a very strong enhancement of electron density and electric field at the edges of the target.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(6 Pt 2): 065401, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18233889

ABSTRACT

The spatial energy distributions of beams of protons accelerated by ultrahigh intensity (>10(19)Wcm2) picosecond laser pulse interactions with thin foil targets are investigated. Using separate, low intensity (<10(13)Wcm2) nanosecond laser pulses, focused onto the front surface of the target foil prior to the arrival of the high intensity pulse, it is demonstrated that the proton beam profile can be actively manipulated. In particular, results obtained with an annular intensity distribution at the focus of the low intensity beam are presented, showing smooth proton beams with a sharp circular boundary at all energies, which represents a significant improvement in the beam quality compared to irradiation with the picosecond beam alone.

20.
Biol Cybern ; 93(4): 275-87, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16151841

ABSTRACT

The tangential neurons in the lobula plate region of the flies are known to respond to visual motion across broad receptive fields in visual space. When intracellular recordings are made from tangential neurons while the intact animal is stimulated visually with moving natural imagery,we find that neural response depends upon speed of motion but is nearly invariant with respect to variations in natural scenery. We refer to this invariance as velocity constancy. It is remarkable because natural scenes, in spite of similarities in spatial structure, vary considerably in contrast, and contrast dependence is a feature of neurons in the early visual pathway as well as of most models for the elementary operations of visual motion detection. Thus, we expect that operations must be present in the processing pathway that reduce contrast dependence in order to approximate velocity constancy. We consider models for such operations, including spatial filtering, motion adaptation, saturating nonlinearities, and nonlinear spatial integration by the tangential neurons themselves, and evaluate their effects in simulations of a tangential neuron and precursor processing in response to animated natural imagery. We conclude that all such features reduce interscene variance in response, but that the model system does not approach velocity constancy as closely as the biological tangential cell.


Subject(s)
Insecta/physiology , Models, Neurological , Motion Perception/physiology , Neurons/physiology , Animals , Visual Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...