Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Chem Biol ; 13(5): 529-536, 2017 05.
Article in English | MEDLINE | ID: mdl-28288109

ABSTRACT

The primate-exclusive MRGPRX2 G protein-coupled receptor (GPCR) has been suggested to modulate pain and itch. Despite putative peptide and small-molecule MRGPRX2 agonists, selective nanomolar-potency probes have not yet been reported. To identify a MRGPRX2 probe, we first screened 5,695 small molecules and found that many opioid compounds activated MRGPRX2, including (-)- and (+)-morphine, hydrocodone, sinomenine, dextromethorphan, and the prodynorphin-derived peptides dynorphin A, dynorphin B, and α- and ß-neoendorphin. We used these to select for mutagenesis-validated homology models and docked almost 4 million small molecules. From this docking, we predicted ZINC-3573-a potent MRGPRX2-selective agonist, showing little activity against 315 other GPCRs and 97 representative kinases-along with an essentially inactive enantiomer. ZINC-3573 activates endogenous MRGPRX2 in a human mast cell line, inducing degranulation and calcium release. MRGPRX2 is a unique atypical opioid-like receptor important for modulating mast cell degranulation, which can now be specifically modulated with ZINC-3573.


Subject(s)
Computer Simulation , Drug Design , Molecular Probes/chemical synthesis , Nerve Tissue Proteins/agonists , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptors, G-Protein-Coupled/agonists , Receptors, Neuropeptide/agonists , Calcium/metabolism , Cell Degranulation/drug effects , Cell Line , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Humans , Ligands , Mast Cells/drug effects , Mast Cells/metabolism , Molecular Docking Simulation , Molecular Probes/chemistry , Molecular Probes/pharmacology , Molecular Structure , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Pyrazoles/chemistry , Pyrimidines/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/genetics , Receptors, Neuropeptide/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL