Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Immunity ; 57(4): 632-648, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38599163

ABSTRACT

One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.


Subject(s)
Dendritic Cells , Immunity, Innate , Adaptive Immunity , Receptors, Pattern Recognition/metabolism , Lymphocyte Activation
2.
Sci Immunol ; 6(56)2021 02 19.
Article in English | MEDLINE | ID: mdl-33891558

ABSTRACT

Opportunities to interrogate the immune responses in the injured tissue of living patients suffering from acute sterile injuries such as stroke and heart attack are limited. We leveraged a clinical trial of minimally invasive neurosurgery for patients with intracerebral hemorrhage (ICH), a severely disabling subtype of stroke, to investigate the dynamics of inflammation at the site of brain injury over time. Longitudinal transcriptional profiling of CD14+ monocytes/macrophages and neutrophils from hematomas of patients with ICH revealed that the myeloid response to ICH within the hematoma is distinct from that in the blood and occurs in stages conserved across the patient cohort. Initially, hematoma myeloid cells expressed a robust anabolic proinflammatory profile characterized by activation of hypoxia-inducible factors (HIFs) and expression of genes encoding immune factors and glycolysis. Subsequently, inflammatory gene expression decreased over time, whereas anti-inflammatory circuits were maintained and phagocytic and antioxidative pathways up-regulated. During this transition to immune resolution, glycolysis gene expression and levels of the potent proresolution lipid mediator prostaglandin E2 remained elevated in the hematoma, and unexpectedly, these elevations correlated with positive patient outcomes. Ex vivo activation of human macrophages by ICH-associated stimuli highlighted an important role for HIFs in production of both inflammatory and anti-inflammatory factors, including PGE2, which, in turn, augmented VEGF production. Our findings define the time course of myeloid activation in the human brain after ICH, revealing a conserved progression of immune responses from proinflammatory to proresolution states in humans after brain injury and identifying transcriptional programs associated with neurological recovery.


Subject(s)
Brain/pathology , Cerebral Hemorrhage/complications , Neuroinflammatory Diseases/immunology , Adult , Aged , Brain/immunology , Cells, Cultured , Cerebral Hemorrhage/immunology , Cerebral Hemorrhage/pathology , Female , Healthy Volunteers , Hematoma , Humans , Longitudinal Studies , Macrophages/immunology , Male , Middle Aged , Neuroinflammatory Diseases/pathology , Neutrophils/immunology , Primary Cell Culture , RNA-Seq , Transcriptome/immunology
3.
Cell ; 181(5): 1016-1035.e19, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32413319

ABSTRACT

There is pressing urgency to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2), which causes the disease COVID-19. SARS-CoV-2 spike (S) protein binds angiotensin-converting enzyme 2 (ACE2), and in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2), promotes cellular entry. The cell subsets targeted by SARS-CoV-2 in host tissues and the factors that regulate ACE2 expression remain unknown. Here, we leverage human, non-human primate, and mouse single-cell RNA-sequencing (scRNA-seq) datasets across health and disease to uncover putative targets of SARS-CoV-2 among tissue-resident cell subsets. We identify ACE2 and TMPRSS2 co-expressing cells within lung type II pneumocytes, ileal absorptive enterocytes, and nasal goblet secretory cells. Strikingly, we discovered that ACE2 is a human interferon-stimulated gene (ISG) in vitro using airway epithelial cells and extend our findings to in vivo viral infections. Our data suggest that SARS-CoV-2 could exploit species-specific interferon-driven upregulation of ACE2, a tissue-protective mediator during lung injury, to enhance infection.


Subject(s)
Alveolar Epithelial Cells/metabolism , Enterocytes/metabolism , Goblet Cells/metabolism , Interferon Type I/metabolism , Nasal Mucosa/cytology , Peptidyl-Dipeptidase A/genetics , Adolescent , Alveolar Epithelial Cells/immunology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/physiology , COVID-19 , Cell Line , Cells, Cultured , Child , Coronavirus Infections/virology , Enterocytes/immunology , Goblet Cells/immunology , HIV Infections/immunology , Humans , Influenza, Human/immunology , Interferon Type I/immunology , Lung/cytology , Lung/pathology , Macaca mulatta , Mice , Mycobacterium tuberculosis , Nasal Mucosa/immunology , Pandemics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/virology , Receptors, Virus/genetics , SARS-CoV-2 , Serine Endopeptidases/metabolism , Single-Cell Analysis , Tuberculosis/immunology , Up-Regulation
4.
Nat Biotechnol ; 38(6): 737-746, 2020 06.
Article in English | MEDLINE | ID: mdl-32341560

ABSTRACT

The scale and capabilities of single-cell RNA-sequencing methods have expanded rapidly in recent years, enabling major discoveries and large-scale cell mapping efforts. However, these methods have not been systematically and comprehensively benchmarked. Here, we directly compare seven methods for single-cell and/or single-nucleus profiling-selecting representative methods based on their usage and our expertise and resources to prepare libraries-including two low-throughput and five high-throughput methods. We tested the methods on three types of samples: cell lines, peripheral blood mononuclear cells and brain tissue, generating 36 libraries in six separate experiments in a single center. To directly compare the methods and avoid processing differences introduced by the existing pipelines, we developed scumi, a flexible computational pipeline that can be used with any single-cell RNA-sequencing method. We evaluated the methods for both basic performance, such as the structure and alignment of reads, sensitivity and extent of multiplets, and for their ability to recover known biological information in the samples.


Subject(s)
Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Software , Animals , Brain/cytology , Cells, Cultured , Humans , Leukocytes, Mononuclear/cytology , Mice
6.
Nat Med ; 26(4): 511-518, 2020 04.
Article in English | MEDLINE | ID: mdl-32251406

ABSTRACT

Cellular immunity is critical for controlling intracellular pathogens, but individual cellular dynamics and cell-cell cooperativity in evolving human immune responses remain poorly understood. Single-cell RNA-sequencing (scRNA-seq) represents a powerful tool for dissecting complex multicellular behaviors in health and disease1,2 and nominating testable therapeutic targets3. Its application to longitudinal samples could afford an opportunity to uncover cellular factors associated with the evolution of disease progression without potentially confounding inter-individual variability4. Here, we present an experimental and computational methodology that uses scRNA-seq to characterize dynamic cellular programs and their molecular drivers, and apply it to HIV infection. By performing scRNA-seq on peripheral blood mononuclear cells from four untreated individuals before and longitudinally during acute infection5, we were powered within each to discover gene response modules that vary by time and cell subset. Beyond previously unappreciated individual- and cell-type-specific interferon-stimulated gene upregulation, we describe temporally aligned gene expression responses obscured in bulk analyses, including those involved in proinflammatory T cell differentiation, prolonged monocyte major histocompatibility complex II upregulation and persistent natural killer (NK) cell cytolytic killing. We further identify response features arising in the first weeks of infection, for example proliferating natural killer cells, which potentially may associate with future viral control. Overall, our approach provides a unified framework for characterizing multiple dynamic cellular responses and their coordination.


Subject(s)
Cell Communication , HIV Infections/genetics , HIV Infections/immunology , Immunity, Cellular/physiology , Single-Cell Analysis/methods , Acute Disease , Acute-Phase Reaction/genetics , Acute-Phase Reaction/immunology , Acute-Phase Reaction/pathology , Adolescent , Adult , Cell Communication/genetics , Cell Communication/immunology , Female , Gene Expression Profiling , Gene Regulatory Networks/immunology , HIV Infections/pathology , HIV-1/genetics , HIV-1/pathogenicity , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Longitudinal Studies , Sequence Analysis, RNA/methods , Systems Integration , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Viral Load/genetics , Viral Load/immunology , Young Adult
7.
Methods Mol Biol ; 1979: 111-132, 2019.
Article in English | MEDLINE | ID: mdl-31028635

ABSTRACT

Seq-Well is a low-cost picowell platform that can be used to simultaneously profile the transcriptomes of thousands of cells from diverse, low input clinical samples. In Seq-Well, uniquely barcoded mRNA capture beads and cells are co-confined in picowells that are sealed using a semipermeable membrane, enabling efficient cell lysis and mRNA capture. The beads are subsequently removed and processed in parallel for sequencing, with each transcript's cell of origin determined via the unique barcodes. Due to its simplicity and portability, Seq-Well can be performed almost anywhere.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , RNA, Messenger/genetics , Single-Cell Analysis/methods , Animals , Equipment Design , Gene Expression Profiling/economics , Gene Expression Profiling/instrumentation , Gene Expression Profiling/methods , Gene Library , High-Throughput Nucleotide Sequencing/economics , High-Throughput Nucleotide Sequencing/instrumentation , Humans , Membranes, Artificial , Polymerase Chain Reaction/economics , Polymerase Chain Reaction/instrumentation , Polymerase Chain Reaction/methods , Reverse Transcription , Sequence Analysis, RNA/economics , Sequence Analysis, RNA/instrumentation , Sequence Analysis, RNA/methods , Single-Cell Analysis/economics , Single-Cell Analysis/instrumentation
8.
Antioxid Redox Signal ; 29(6): 518-540, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29320869

ABSTRACT

SIGNIFICANCE: The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various biochemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. CRITICAL ISSUES: In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. FUTURE DIRECTIONS: The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity. Antioxid. Redox Signal. 29, 518-540.


Subject(s)
Biosensing Techniques , Fluorescent Dyes , Molecular Probes , Oxidation-Reduction , Humans , Oxygen/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction
10.
Cell ; 170(1): 127-141.e15, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666115

ABSTRACT

Homeostatic programs balance immune protection and self-tolerance. Such mechanisms likely impact autoimmunity and tumor formation, respectively. How homeostasis is maintained and impacts tumor surveillance is unknown. Here, we find that different immune mononuclear phagocytes share a conserved steady-state program during differentiation and entry into healthy tissue. IFNγ is necessary and sufficient to induce this program, revealing a key instructive role. Remarkably, homeostatic and IFNγ-dependent programs enrich across primary human tumors, including melanoma, and stratify survival. Single-cell RNA sequencing (RNA-seq) reveals enrichment of homeostatic modules in monocytes and DCs from human metastatic melanoma. Suppressor-of-cytokine-2 (SOCS2) protein, a conserved program transcript, is expressed by mononuclear phagocytes infiltrating primary melanoma and is induced by IFNγ. SOCS2 limits adaptive anti-tumoral immunity and DC-based priming of T cells in vivo, indicating a critical regulatory role. These findings link immune homeostasis to key determinants of anti-tumoral immunity and escape, revealing co-opting of tissue-specific immune development in the tumor microenvironment.


Subject(s)
Interferon-gamma/immunology , Melanoma/immunology , Monocytes/immunology , Neoplasm Metastasis/pathology , Skin Neoplasms/immunology , Suppressor of Cytokine Signaling Proteins/metabolism , Tumor Microenvironment , Animals , Cell Differentiation , Dendritic Cells/immunology , Homeostasis , Humans , Melanoma/genetics , Melanoma/pathology , Mice , Monocytes/pathology , Sequence Analysis, RNA , Single-Cell Analysis , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Transcriptome
11.
Nat Commun ; 8: 16087, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28703127

ABSTRACT

Glutathione plays many important roles in biological processes; however, the dynamic changes of glutathione concentrations in living cells remain largely unknown. Here, we report a reversible reaction-based fluorescent probe-designated as RealThiol (RT)-that can quantitatively monitor the real-time glutathione dynamics in living cells. Using RT, we observe enhanced antioxidant capability of activated neurons and dynamic glutathione changes during ferroptosis. RT is thus a versatile tool that can be used for both confocal microscopy and flow cytometry based high-throughput quantification of glutathione levels in single cells. We envision that this new glutathione probe will enable opportunities to study glutathione dynamics and transportation and expand our understanding of the physiological and pathological roles of glutathione in living cells.


Subject(s)
Fluorescent Dyes , Fluorometry/methods , Glutathione/analysis , Glutathione/chemistry , HeLa Cells , Humans , Kinetics , Single-Cell Analysis
12.
Org Lett ; 17(24): 5978-5981, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26606171

ABSTRACT

Density functional theory (DFT) was applied to study the thermodynamics and kinetics of reversible thiol-Michael addition reactions. M06-2X/6-31G(d) with the SMD solvation model can reliably predict the Gibbs free energy changes (ΔG) of thiol-Michael addition reactions with an error of less than 1 kcal·mol(-1) compared with the experimental benchmarks. Taking advantage of this computational model, the first reversible reaction-based fluorescent probe was developed that can monitor the changes in glutathione levels in single living cells.


Subject(s)
Fluorescent Dyes/chemistry , Glutathione/analysis , Sulfhydryl Compounds/chemistry , Fluorescent Dyes/chemical synthesis , HeLa Cells , Humans , Kinetics , Molecular Structure , Thermodynamics
13.
ACS Chem Biol ; 10(3): 864-74, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25531746

ABSTRACT

Glutathione (GSH) plays an important role in maintaining redox homeostasis inside cells. Currently, there are no methods available to quantitatively assess the GSH concentration in live cells. Live cell fluorescence imaging revolutionized the field of cell biology and has become an indispensable tool in current biological studies. In order to minimize the disturbance to the biological system in live cell imaging, the probe concentration needs to be significantly lower than the analyte concentration. Because of this, any irreversible reaction-based GSH probe can only provide qualitative results within a short reaction time and will exhibit maximum response regardless of the GSH concentration if the reaction is completed. A reversible reaction-based probe with an appropriate equilibrium constant allows measurement of an analyte at much higher concentrations and, thus, is a prerequisite for GSH quantification inside cells. In this contribution, we report the first fluorescent probe-ThiolQuant Green (TQ Green)-for quantitative imaging of GSH in live cells. Due to the reversible nature of the reaction between the probe and GSH, we are able to quantify mM concentrations of GSH with TQ Green concentrations as low as 20 nM. Furthermore, the GSH concentrations measured using TQ Green in 3T3-L1, HeLa, HepG2, PANC-1, and PANC-28 cells are reproducible and well correlated with the values obtained from cell lysates. TQ Green imaging can also resolve the changes in GSH concentration in PANC-1 cells upon diethylmaleate (DEM) treatment. In addition, TQ Green can be conveniently applied in fluorescence activated cell sorting (FACS) to measure GSH level changes. Through this study, we not only demonstrate the importance of reaction reversibility in designing quantitative reaction-based fluorescent probes but also provide a practical tool to facilitate redox biology studies.


Subject(s)
Epithelial Cells/metabolism , Fluorescent Dyes/chemistry , Glutathione/analysis , Molecular Imaging/methods , 3T3-L1 Cells , Animals , Epithelial Cells/ultrastructure , Fluorescent Dyes/chemical synthesis , Glutathione/metabolism , HeLa Cells , Hep G2 Cells , Humans , Mice , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...